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We study nonlinear dispersive wave systems described by hyperbolic PDE’s in R
d and

difference equations on the lattice Z
d. The systems involve two small parameters: one is

the ratio of the slow and the fast time scales, and another one is the ratio of the small
and the large space scales. We show that a wide class of such systems, including non-
linear Schrodinger and Maxwell equations, Fermi–Pasta–Ulam model and many other
not completely integrable systems, satisfy a superposition principle. The principle essen-
tially states that if a nonlinear evolution of a wave starts initially as a sum of generic
wavepackets (defined as almost monochromatic waves), then this wave with a high accu-
racy remains a sum of separate wavepacket waves undergoing independent nonlinear
evolution. The time intervals for which the evolution is considered are long enough to
observe fully-developed nonlinear phenomena for involved wavepackets. In particular,
our approach provides a simple justification for numerically observed effect of almost
non-interaction of solitons passing through each other without any recourse to the com-
plete integrability. Our analysis does not rely on any ansatz or common asymptotic
expansions with respect to the two small parameters but it uses rather explicit and

constructive representation for solutions as functions of the initial data in the form of
functional analytic series.
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nonlinear Schrodinger equation; Fermi–Pasta–Ulam system; dispersive media; small
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1. Introduction

The principal object of our studies here is a general nonlinear evolutionary sys-
tem which describes wave propagation in homogeneous media governed either by
a hyperbolic PDE’s in Rd or by a difference equation on the lattice Zd, where
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d = 1, 2, 3, . . . is the space dimension. We assume the evolution to be governed by
the following equation with constant coefficients

∂τU = − i
�
L(−i∇)U + F(U), U(r, τ)|τ=0 = h(r), r ∈ Rd, (1.1)

where (i) U = U(r, τ), r ∈ Rd, U ∈ C2J is a 2J-dimensional vector; (ii) L(−i∇)
is a linear self-adjoint differential (pseudodifferential) operator with constant coef-
ficients with the symbol L(k), which is a Hermitian 2J × 2J matrix; (iii) F is a
general polynomial nonlinearity; (iv) � > 0 is a small parameter. The form of the
equation suggests that the processes described by it involve two time scales. Since
the nonlinearity F(U) is of order one, nonlinear effects occur at times τ of order
one, whereas the natural time scale of linear effects, governed by the operator L
with the coefficient 1/�, is of order �. Consequently, the small parameter � measures
the ratio of the slow (nonlinear effects) time scale and the fast (linear effects) time
scale. A typical example an equation of the form (1.1) is nonlinear Schrodinger
equation (NLS) or a system of NLS. Another one is the Maxwell equation in a
periodic medium when truncated to a finite number of bands, and more examples
are discussed below.

We assume further that the initial data h for the evolution equation (1.1) to be
the sum of a finite number of wavepackets hl, l = 1, . . . , N , i.e.

h = h1 + · · · + hN , (1.2)

where the monochromaticity of every wavepacket hl is characterized by another
small parameter β.

The well-known superposition principle is a fundamental property of every linear
evolutionary system, stating that the solution U corresponding to the initial data h
as in (1.2) equals

U = U1 + · · · + UN , for h = h1 + · · · + hN , (1.3)

where Ul is the solution to the same linear problem with the initial data hl.
Evidently the standard superposition principle cannot hold exactly as a gen-

eral principle in the presence of a nonlinearity, and, at the first glance, there is no
expectation for it to hold even approximately. We have discovered though that the
superposition principle does hold with a high accuracy for general dispersive non-
linear wave systems provided that the initial data are a sum of generic wavepackets,
and this constitutes the subject of this paper. Namely, the superposition principle
for nonlinear wave systems states that the solution U corresponding to the multi-
wavepacket initial data h as in (1.2) equals

U = U1 + · · · + UN + D, for h = h1 + · · · + hN , where D is small.

As to the particular form (1.1) we chose to be our primary one, we would like to
point out that many important classes of problems involving small parameters can
be readily reduced to the framework of (1.1) by a simple rescaling. It can be seen
from the following examples. First example is a system with a small factor before
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the nonlinearity

∂tv = −iLv + αf(v), v|t=0 = h, 0 < α � 1, (1.4)

where initial data are bounded uniformly in α. Such problems are reduced to (1.1)
by the time rescaling τ = tα. Note that now � = α and the finite time interval
0 ≤ τ ≤ τ∗ corresponds to the long time interval 0 ≤ t ≤ τ∗/α.

The second example is a system with small initial data on a long time interval.
The system here is given and has no small parameters but the initial data are small,
namely

∂tv = −iLv + f0(v), v|t=0 = α0h, 0 < α0 � 1, where

f0(v) = f (m)
0 (v) + f (m+1)

0 (v) + · · · , (1.5)

where α0 is a small parameter and f (m)(v) is a homogeneous polynomial of degree
m ≥ 2. After the rescaling v = α0V, we obtain the following equation with a small
nonlinearity

∂tV = −iLV + αm−1
0 [f (m)

0 (V) + α0f0(m+1)(V) + · · ·], V|t=0 = h, (1.6)

which is of the form of (1.4) with α = αm−1
0 . Introducing the slow time variable

τ = tαm−1
0 we get from the above an equation of the form (1.1), namely

∂τV = − i
αm−1

0

LV + [f (m)(V) + α0f (m+1)(V) + · · ·], V|t=0 = h, (1.7)

where the nonlinearity does not vanish as α0 → 0. In this case � = αm−1
0 and the

finite time interval 0 ≤ τ ≤ τ∗ corresponds to the long time interval 0 ≤ t ≤ τ∗
αm−1

0

with small α0 � 1.
Very often in theoretical studies of equations of the form (1.1) or ones reducible

to it, a functional dependence between � and β is imposed, resulting in a single
small parameter. The most common scaling is � = β2. The nonlinear evolution
of wavepackets for a variety of equations which can be reduced to the form (1.1)
was studied in numerous physical and mathematical papers, mostly by asymp-
totic expansions of solutions with respect to a single small parameter similar to
β, see [11, 14, 18, 20, 23, 28, 29, 34, 38–40] and references therein. Often the asymp-
totic expansions are based on a specific ansatz prescribing a certain form to the
solution. In our studies here we do not use asymptotic expansions with respect
to a small parameter and do not prescribe a specific form to the solution, but
we impose conditions on the initial data requiring it to be a wavepacket or a
linear combination of wavepackets. Since we want to establish a general prop-
erty of a wide class of systems, we apply a general enough dynamical approach.
There is a number of general approaches developed for the studies of high-
dimensional and infinite-dimensional nonlinear evolutionary systems of hyperbolic
type, [10, 13, 19, 22, 27, 31, 35, 39, 41, 43, 45] and references therein. We develop here
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an approach which allows to exploit specific properties of a certain class of initial
data, namely wavepackets and their linear combinaions, which comply with the
symmetries of equations. Such a class of the initial data is obviously lesser than
all possible initial data. One of the key mathematical tools developed here for the
nonlinear studies is a refined implicit function theorem (Theorem 4.25). This theo-
rem provides a constructive and rather explicit representation of the solution to an
abstract nonlinear equation in a Banach space as a certain functional series. The
representation is explicit enough to prove the superposition principle and is general
enough to carry out the studies of the problem without imposing restrictions on
dimension of the problem, structural restrictions on nonlinearities or a functional
dependence between the two small parameters �, β.

As we have already stated the superposition principle holds with high accuracy
for linear combinations of wavepackets. A wavepacket h(β, r) can be most easily
described in terms of its Fourier transform h̃(β,k). Simply speaking, wavepacket
h̃(β,k) is a function which is localized in β-neighborhood of a given wavevector
k∗ (the wavepacket center) and as a vector is an eigenfunction of the matrix L(k),
details of the definition of the wavepacket can be found in the following Sec. 2. The
simplest example of a wavepacket is a function of the form

h̃(β,k) = β−dĥ

(
k − k∗

β

)
gn(k∗), k ∈ Rd, (1.8)

where gn(k∗) is an eigenvector of the matrix L(k∗) and ĥ(k) is a Schwartz function
(i.e. it is infinitely smooth and rapidly decaying one). Note that the inverse Fourier
transform h(β, r) of h̃(β,k) has the form

h(β, r) = h(βr)eik∗rgn(k∗), r ∈ Rd, (1.9)

where h(r) is a Schwartz function, and obviously has a large spatial extension of
order β−1.

We study the nonlinear evolution equation (1.1) on a finite time interval

0 ≤ τ ≤ τ∗, where τ∗ > 0 is a fixed number (1.10)

which may depend on the L∞ norm of the initial data h but, importantly, τ∗
does not depend on �. We consider classes of initial data such that wave evolution
governed by (1.1) is significantly nonlinear on time interval [0, τ∗] and the effect of
the nonlinearity F (U) does not vanish as � → 0. We assume that β, � satisfy

0 < β ≤ 1, 0 < � ≤ 1,
β2

�
≤ C1 with some C1 > 0. (1.11)

The above condition on the dispersion parameter β2

� ensures that the disper-
sive effects are not dominant and do not suppress nonlinear effects, see [7] for a
discussion.

To formulate the superposition principle more precisely, we introduce first the
solution operator S(h)(τ) : h → U(τ) which relates to the initial data h of the non-
linear evolution equation (1.1) the solution U(t) of this equation. Suppose that the
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initial state is a multi-wavepacket, namely h =
∑

hl, with hl, l = 1, . . . , N being
“generic” wavepackets. Then for all times 0 ≤ τ ≤ τ∗ the following superposition
principle holds

S
(

N∑
l=1

hl

)
(τ) =

N∑
l=1

S(hl)(τ) + D(τ), (1.12)

‖D(τ)‖E = sup
0≤τ≤τ∗

‖D(τ)‖L∞ ≤ Cδ
�

β1+δ
for any small δ > 0. (1.13)

Obviously, the right-hand side of (1.13) may be small only if � ≤ C1β. There are
examples (see [7]) in which D(τ) is not small for � = C1β. In what follows we refer
to a linear combination of wavepackets as a multi-wavepacket, and to wavepackets
which constitutes the multi-wavepacket as component wavepackets.

The superposition principle implies, in particular, that in the process of non-
linear evolution every single wavepacket propagates almost independently of other
wavepackets even though they may “collide” in physical space for a certain period
of time and the exact solution equals the sum of particular single wavepacket solu-
tions with a high precision. In particular, the dynamics of a solution with multi-
wavepacket initial data is reduced to dynamics of separate solutions with single
wavepacket data. Note that the nonlinear evolution of a single wavepacket solu-
tion for many problems is studied in detail, namely it is well-approximated by its
own nonlinear Schrodinger equation (NLS), see [18, 23, 29, 30, 39–41,7]and refer-
ences therein.

The superposition principle (1.12), (1.13) can also be looked at as a form of
separation of variables. Such a form of separation of variables is different from usual
complete integrability, and its important factor is the continuity of spectrum of the
linear component of the system. The approximate superposition principle imposes
certain restrictions on dynamics which differ from usual constraints imposed by the
conserved quantities as in completely integrable systems as well as from topological
constraints related to invariant tori as in KAM theory.

Now we present an elementary physical argument justifying the superposition
principle. If nonlinearity is absent, the superposition principle holds exactly and
any deviation from it is due to the nonlinear interactions between wavepackets, so
we need to estimate their impact. Suppose that initially at time τ = 0 the spatial
extension s of every composite wavepacket is characterized by the parameter β−1 as
in (1.9).] Assume also (and it is quite an assumption) that the component wavepack-
ets during the nonlinear evolution maintain somehow their wavepacket identity,
group velocities and spatial extension. Then, consequently, the spatial extension
of every component wavepacket is propositional to β−1 and its group velocity vj

is proportional to �−1. The difference ∆v between any two different component
group velocities is also proportional to �−1. The time when two different compo-
nent wavepackets overlap in space is proportional to s/|∆v| and, hence, to �/β.
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Since the nonlinear term is of order one, the magnitude of the impact of the nonlin-
earity during this time interval should be proportional to �/β, which results in the
same order of magnitude of D. This conclusion is in agreement with the estimate
of magnitude of D in (1.13) (if we set δ = 0).

The rigorous proof of the superposition principle we present in this paper is not
based on the above argument since it implicitly relies on a superposition principle in
the form of an assumption that component wavepackets can somehow maintain their
identity, group velocities and spatial extension during nonlinear evolution which by
no means is obvious. In fact, the question if a wavepacket or a multi-wavepacket
structure can be preserved during nonlinear evolution is important and interesting
question on its own right. The answer to it under natural conditions is affirmative as
we have shown in [7]. Namely, if initially solution was a multi-wavepacket at τ = 0, it
remains a multi-wavepacket at τ > 0, and every component wavepacket maintains
its identity. Therefore a wavepacket can be interpreted as a quasi-particle which
maintains its identity and can interact with other quasi-particles. This property
holds also in the situation when there are stronger nonlinear interactions between
wavepacket components which do not allow the superposition principle to hold, see
[7] for details.

The proof we present here is based on general algebraic-functional considera-
tions. The strategy of our proof is as follows. First, we prove that the operator S(h)
in (1.12) is analytical, i.e. it can be written in the form of a convergent series

S(h) =
∞∑

j=1

S(j)(hj), hj = h, . . . ,h (j copies of h),

where S(j)(hj) is a j-linear operator applied to h. Now we substitute h in S(j) with
the sum of hl as in (1.2). Considering for simplicity the case N = 2 and using the
polylinearity of S(j) we get

S(2)((h1 + h2)2) = S(2)((h1)2) + 2S(2)(h1h2) + S(2)((h2)2), . . . ,

implying after the summation

S(h) = S(2)((h1)2) + S(3)((h1)3) + · · · + S(2)((h2)2) + S(3)((h2)3) + · · · + Scr

= S(h1) + S(h2) + Scr,

where Scr is a sum of all cross terms such as S(2)(h1h2) etc. The main part of the
proof is to show that every term in Scr is small. An important step for that is based
on the refined implicit function theorem (Theorem 4.25) which allows to represent
the operators S(j) in the form of a sum of certain composition monomials, which,
in turn, have a relatively simple oscillatory integral representation. Importantly, the
relevant oscillatory integrals involve the known initial data hl rather than unknown
solution U. The analysis of the oscillatory integrals shows that there are two mech-
anisms responsible for the smallness of the integrals. The first one is time averag-
ing, and the second one is based on large group velocities (in the slow time scale) of
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wavepackets. Remarkably, if wavepackets satisfy proper genericity conditions, every
cross term is small due one of the above mentioned two mechanisms. Importantly,
the both mechanism are instrumental for the smallness of terms in Scr, and the time
averaging alone is not sufficient. We obtain estimates on terms in Scr which ulti-
mately yield the estimate (1.13). Since the smallness of interactions between waves
under nonlinear evolution stems from high frequency oscillations in time and space
of functions involved in the interaction integrals, we can interpret it as a result of the
destructive wave interference. The above sketch shows that the mathematical tools
we use in our studies are (i) the theory of analytic functions and corresponding series
of infinite-dimensional (Banach) variable, and (ii) the theory of oscillatory integrals.

We would like to point out that the estimate (1.13) for the remainder in the
superposition principle is quite accurate. For example, when the estimate is applied
to the sine-Gordon equation with bimodal initial data, it yields essentially opti-
mal estimates for the magnitude of the interaction of counterpropagating waves.
These estimates are more accurate than ones obtained by the well known ansatz
method as in [38], and the comparative analysis is provided below in Example 1
of Sec. 2.2.

To summarize the above analysis, we list important ingredients of our approach.

• The spectrum of the underlying linear problem is continuous.
• The wave nonlinear evolution is analyzed based on the modal decomposition with

respect to the linear component of the system because there is no exchange of
energy between modes by linear mechanisms. Wavepacket definition is based on
the modal expansion determining, in particular, its the spatial extension and the
group velocity.

• The problem involves two small parameters β and � respectively in the ini-
tial data and coefficients of the equations. These parameters scale respectively
(i) the range of wavevectors involved in its modal composition, with β−1 scaling
its spatial extension, and (ii) � scaling the ratio of the slow and the fast time
scales. We make no assumption on the functional dependence between β and �,
which are essentially independent and are subject only to inequalities.

• The nonlinear evolution is studied for a finite time τ∗ which may depend on, say,
the amplitude of the initial excitation, and, importantly, τ∗ is long enough to
observe appreciable nonlinear phenomena which are not vanishingly small. The
superposition principle can be extended to longer time intervals up to blow-up
time or even infinity if relevant uniform in β and � estimates of solutions in
appropriate norms are available.

• Two fast wave processes (in the chosen slow time scale) attributed to the linear
operator L and having typical time scale of order � can be identified as responsi-
ble for the essential independence of wavepackets: (i) fast time oscillations which
lead to time averaging; (ii) fast wavepacket propagation with large group veloci-
ties produce effective weakening of interactions which are not subjected to time
averaging.
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The rest of the paper is organized as follows. In the following Sec. 2, we for-
mulate exact conditions and theorems for lattice equations and partial differential
equations and give examples. In Sec. 3, we recast the original evolution equation in
a convenient reduced form allowing, in particular, to construct a representation of
the solution in a form of convergent functional operator series explicitly involving
the equation nonlinear term. In Sec. 4, we provide the detailed analysis of function-
analytic series used to get a constructive representation of the solution. Section 5
is devoted to the analysis of certain oscillatory integrals which are terms of the
series representing the solution. Note that when making estimations we use the
same letter C for different constants in different statements. Finally, the proofs of
Theorems 2.15 and 2.19 are provided in Sec. 6. More examples and generalizations
are given in Sec. 7. For the reader’s convenience, we provide a list of notations in
the end of the paper.

2. Statement of Results

In this section, we consider two classes of problems: lattice equations and partial
differential equations. After Fourier transform they can be written in the modal form
which is essentially the same in both cases. We formulate the exact conditions on the
modal equations and present the main theorems on the superposition principle. We
also give examples of equations to which the general theorems apply, in particular
Fermi–Pasta–Ulam system and nonlinear Schrodinger equation.

2.1. Main definitions, statements and examples for the lattice

equation

The first class of evolutionary systems we consider involves systems of equations
describing coupled nonlinear oscillators on a lattice Zd, namely the following lattice
system of ordinary differential equations (ODE’s) with respect to time

∂τU(m, τ) = − i
�
LU(m, τ) + F (U)(m, τ), U(m, 0) = h(m), m ∈ Zd, (2.1)

where L is a linear operator, F is a nonlinear operator and � > 0 is a small
parameter (see [6]). To analyze the evolution equation (2.1) it is instrumental to
recast it in the modal form (the wavevector domain), in other words, to apply to it
the lattice Fourier transform as defined by the formula

Ũ(k) =
∑

m∈Zd

U(m)e−im·k, where k ∈ [−π, π]d, (2.2)

k is called a wave vector. We assume that the Fourier transformation of the original
lattice evolutionary equation (2.1) is of the form

∂τ Ũ(k, τ) = − i
�
L(k)Ũ(k, τ) + F̃ (Ũ)(k, τ); Ũ(k, 0) = h̃(k) for τ = 0. (2.3)

Here, Ũ(k, τ) is 2J-component vector, L(k) is a k-dependent 2J × 2J matrix that
corresponds to the linear operator L and F̃ (Ũ) is a nonlinear operator, which we
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describe later. The matrix L(k) and the coefficients of the nonlinear operator F̃ (Ũ)
in (2.3) are 2π-periodic functions of k and for that reason we assume that k belongs
to the torus Rd/(2πZ)d which we denote by [−π, π]d. The k-dependent matrix L(k)
determines the linear operator L and plays an important role in the analysis. We
refer to L(k) as to the linear symbol. Since (2.3) describes evolution of the Fourier
modes of the solution, we call (2.3) modal evolution equation.

We study the modal evolution equation (2.3) on a finite time interval

0 ≤ τ ≤ τ∗, (2.4)

where τ∗ > 0 is a fixed number which, as we will see, may depend on the magnitude
of the initial data. The time τ∗ does not depend on small parameters, it is of order
one and is determined by norms of operators and initial data; it is almost optimal
for general F since there are examples when τ∗ is of the same order as the blow-up
time of solutions. To make formulas and estimates simpler, we assume without loss
of generality that

τ∗ ≤ 1. (2.5)

For a number of reasons the modal form (2.3) of the evolution equation is much
more suitable for nonlinear analysis than the original evolution equation (2.1). This
is why from now on we consider the modal form of evolution equation (2.3) for the
modal components Ũ(k, τ) as our primary evolution equation.

First, as an illustration, let us look at the simplest nontrivial example of (2.3)
with J = 1 corresponding to two-component vector fields on the lattice Zd. A
two-component vector function U(m) of a discrete argument m ∈ Zd has the form

U(m) =
[

U+(m)
U−(m)

]
, m ∈ Zd. (2.6)

In this example L(k) in (2.3) is a 2×2 matrix, and we assume that for almost all k
it has two different real eigenvalues ω−(k) and ω+(k) (the dependence of ω±(k) on
k is called the dispersion relation) satisfying the relation ω−(k) = −ω+(k), namely,

L(k)gζ(k) = ωζ(k)gζ(k), ωζ(k) = ζω(k), ζ = ±, (2.7)

where, evidently, gζ(k) are the eigenvectors of L(k). These eigenvalues ωζ(k),
ζ = ±, are 2π-periodic real valued functions

ωζ(k1 + 2π, k2, . . . , kd) = · · · = ωζ(k1, k2, . . . , kd + 2π) = ωζ(k1, k2, . . . , kd). (2.8)

The simplest nonlinearity in (2.3) is a quadratic nonlinear operator F̃ (Ũ) =
F̃ (2)(Ũ2) which is given by the following convolution integral

F̃ (2)(Ũ1Ũ2)(k) =
1

(2π)d

∫
k′∈[−π,π]d; k′+k′′=k

χ(2)(k, �k)(Ũ1(k′)Ũ2(k′′)) dk′, (2.9)

where �k = (k′,k′′), χ(2)(k, �k) is a quadratic tensor (susceptibility) which acts on
vectors Ũ1, Ũ2. We refer to the case J = 1 as the one-band case since the corre-
sponding linear operator is described by a single function ω(k).
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A particular example of (2.3) is obtained as a Fourier transform of the following
Fermi–Pasta–Ulam equation (FPU) (see [12, 37, 44]) describing a nonlinear system
of coupled oscillators:

∂τxn =
1
�
(yn − yn−1), (2.10)

∂τyn =
1
�
(xn+1 − xn) + α2(xn+1 − xn)2 + α3(xn+1 − xn)3, n ∈ Z.

Note that an equivalent form of (2.10) (with α2 = 0) is the second-order equation

∂2
τxn =

1
�2

(xn−1 − 2xn + xn+1) +
α3

�
((xn+1 − xn)3 − (xn − xn−1)3). (2.11)

In this example d = 1, k = k and elementary computations show that the Fourier
transform of the FPU equation (2.10) has the form of the modal evolution equation
(2.3), (2.9) where

Ũ =
[

x̃

ỹ

]
, iL(k) =

[
0 −(1 − e−ik)∗

(1 − e−ik) 0

]
, ωζ(k) = 2ζ

∣∣∣∣sin k

2

∣∣∣∣,
χ(2)(k, k′, k′′)Ũ1(k′)Ũ2(k′′) = α2(1 − e−ik′

)(1 − e−ik′′
)
[

0
x̃1(k′)x̃2(k′′)

]
,

(2.12)

and a similar formula for χ(3) (see (7.5)).
Now let us consider the general multi-component vector case with J > 1 which

we refer to as J-band case for which the system (2.3) has 2J components, and
instead of (2.7) we assume that L(k) has eigenvalues and eigenvectors as follows:

L(k)gn,ζ(k) = ωn,ζ(k)gn,ζ(k), ωn,ζ(k) = ζωn(k), ζ = ±, n = 1, . . . , J,

(2.13)

where ωn(k) are real-valued, continuous for all k functions, and eigenvectors
gn,ζ(k) ∈ C2J have unit length in the standard Euclidean norm. We also suppose
that the eigenvalues are numbered so that

ωn+1(k) ≥ ωn(k) ≥ 0, n = 1, . . . , J − 1, (2.14)

and we call n the band index. Note that the presence of ζ = ± reflects a symmetry of
the system allowing it, in particular, to have real-valued solutions. Such a symmetry
of dispersion relation ωn(k) occurs in photonic crystals and many other physical
problems.

Note that (2.13) implies that the following symmetry relation hold:

ωn,−ζ(k) = −ωn,ζ(k), n = 1, . . . , J. (2.15)

We also always assume that the following inversion symmetry holds:

ωn,ζ(−k) = ωn,ζ(k). (2.16)

Remark 2.1. Assuming (2.15) and (2.16) we suppose that the dispersion relations
ωζ(k) have the same symmetry properties as the dispersion relations of Maxwell
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equations in periodic media, see [1–3, 5]. We would like to stress that these symmetry
conditions are not imposed for technical reasons but because they are consequences
of fundamental symmetries of physical media. Such symmetries arise in many prob-
lems including, for instance, the Fermi–Pasta–Ulam equation, or when L(k) origi-
nates from a Hamiltonian H(p, q) = 1

2 (H1(p2)) + 1
2H2(q2). In the opposite case if

it is assumed that (2.15) and (2.16) never hold, the results of this paper hold and
the proofs, in fact, are simpler. The case with the symmetry is more difficult and
delicate because of a possibility of resonant nonlinear interactions.

There are values of k for which inequalities (2.14) turn into equalities, these
points require special treatment.

Definition 2.2 (Band-Crossing Points). We call k0 a band-crossing point if
ωn+1(k0) = ωn(k0) for some n or ω1(k0) = 0 and denote the set of band-crossing
points by σ.

Everywhere in this paper we assume that the following condition is satisfied.

Condition 2.3. The set σ of band-crossing points is a closed nowhere dense set
in Rd with zero Lebesgue measure, the entries of the matrix L(k) are infinitely
smooth functions of k /∈ σ and ωn(k) are continuous functions of kfor all k and are
infinitely smooth when k /∈ σ.

Observe that for k /∈ σ all the eigenvalues of the matrix L(k) are different and
the corresponding eigenvectors gn,ζ(k) of L(k)can be locally defined as smooth
functions of k /∈ σ as long as L(k) is smooth.

Remark 2.4. The band-crossing points are discussed in more details in [1, 2]. Here
we only note that generically the singular set σ is a manifold of the dimension d−2,
see [1, 2]. A simple example of a band-crossing point is k = 0 in (2.12).

Since we do not assume the matrix L(k) to be Hermitian, we impose the follow-
ing condition on its eigenfunctions which guarantees its uniform diagonalization.

Condition 2.5. We assume that the 2J × 2J matrix formed by the eigenvectors
gn,ζ(k) of L(k), namely,

Ξ(k) = [g1,+(k),g1,−(k), . . . ,gJ,+(k),gJ,+(k)]

is uniformly bounded together with its inverse

sup
k/∈σ

‖Ξ(k)‖, sup
k/∈σ

‖Ξ−1(k)‖ ≤ CΞ for some constant CΞ. (2.17)

Here and everywhere we use the standard Euclidean norm in C2J .

Note that if the matrix L(k) is Hermitian for every k, the eigenvectors form
an orthonormal system. Then the matrix Ξ, which diagonalizes L, is unitary and
(2.17) is satisfied with CΞ = 1. Everywhere throughout the paper we assume that
Condition 2.5 is satisfied.
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We introduce for vectors ũ ∈ C2J their expansion with respect to the basis gn,ζ :

ũ(k) =
J∑

n=1

∑
ζ=±

ũn,ζ(k)gn,ζ(k) =
J∑

n=1

∑
ζ=±

ũn,ζ(k), (2.18)

and we refer to it as the modal decomposition of ũ(k), and call the coefficients
ũn,ζ(k) the modal coefficients of ũ(k). In this expansion we assign to every n, ζ a
linear projection Πn,ζ(k) in C2J corresponding to gn,ζ(k), namely

Πn,ζ(k)ũ(k) = ũn,ζ(k)gn,ζ(k) = ũn,ζ(k), n = 1, . . . , J, ζ = ±. (2.19)

Note that these projections may be not orthogonal if L(k) is not Hermitian.
Evidently the projections Πn,ζ(k) are determined by the matrix L(k) and there-
fore do not depend on the choice of the basis gn,ζ(k). Projections Πn,ζ(k) depend
smoothly on k /∈ σ (note that we do not assume that the basis elements gn,ζ(k)
are defined globally as smooth functions for all k /∈ σ, in fact band-crossing points
may be branching points for eigenfunctions, see, for example, [1].) They are also
uniformly bounded thanks to Condition 2.5:

C−1
Ξ |V| ≤

(∑
n,ζ

|Πn,ζ(k)V|2
)1/2

≤ CΞ|V|, V ∈ C2J , k /∈ σ. (2.20)

We would like to point out that most of the quantities are defined outside of the
singular set σ of band-crossing points. It is sufficient since we consider Ũ(k) as an
element of the space L1 of Lebesgue integrable functions and the set σ has zero
Lebesgue measure.

The class of nonlinearities F̃ in (2.3) which we consider can be described as
follows. F̃ is a general polynomial nonlinearity of the form

F̃ (Ũ) =
mF∑
m=2

F̃ (m)(Ũm), with mF ≥ 2, (2.21)

where m-linear operators F̃ (m) are represented by integral convolution formulas
similar to (2.9), namely

F̃ (m)(Ũ1, . . . , Ũm)(k, τ) =
∫

Dm

χ(m)(k, �k)Ũ1(k′) · · · Ũm(k(m)(k, �k)) d̃(m−1)d�k,

(2.22)

where the domain

Dm = [−π, π](m−1)d, (2.23)

and we use notation

d̃(m−1)d�k =
1

(2π)(m−1)d
dk′ · · · dk(m−1) (2.24)

and

k(m)(k, �k) = k − k′ − · · · − k(m−1), �k = (k′, . . . ,k(m)). (2.25)
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Condition 2.6 (Nonlinearity Regularity). The nonlinear operator F̃ (Ũ)
defined by (2.21) satisfy

‖χ(m)‖ =
1

(2π)(m−1)d
sup

k,k′,...,k(m)
‖χ(m)(k,k′, . . . ,k(m))‖ ≤ Cχ, m = 2, 3, . . . ,

(2.26)

where, without loss of generality, we can assume that Cχ ≥ 1. The norm |χ(m)(k, �k)|
of the tensor χ(m) with a fixed �k as a m-linear operator from (C2J )m into (C2J) is
defined by

|χ(m)(k, �k)| = sup
|xj |≤1

|χ(m)(k, �k)(x1, . . . ,xm)|, (2.27)

where as always, | · | stands for the standard Euclidean norm. The tensors χ(m)(k, �k)
are assumed to be smooth functions of k,k′, . . . ,k(m) /∈ σ, namely for every com-
pact K ⊂ Rd\σ and for all m = 2, 3, . . .

|∇lχ(m)(k,k′, . . . ,k(m))| ≤ CK,l if k,k′, . . . ,k(m) ∈ K, l = 1, 2, . . . , (2.28)

where ∇lχ(m) is the vector composed of all partial derivatives of order l of all
components of the tensor χ(m) with respect to the variables k,k′, . . . ,k(m).

From now on all the nonlinear operators we consider are assumed to satisfy the
nonlinearity regularity Condition 2.6.

Remark 2.7. At first sight, since � is a small parameter, one might think that the
linear term in (2.1) with the factor 1

� is dominant. But it is not that simple. Indeed,

since all eigenvalues of L(k) are purely imaginary the magnitude of e−
i
� L(k)h̃(k)

which represents the solution of a linear equation (with F̃ = 0) is bounded uniformly
in �. A nonlinearity F̃ alters the solution for a bounded time τ∗ which is not small
for small �. Therefore the influence of the nonlinearity can be significant. This
phenomenon can be illustrated by the following toy model. Let us consider the
partial differential equation for a scalar function y(x, τ):

∂τy = −1
�
∂xy + y2, y(x, 0) = h(x).

Its solution is of the form

y(x, τ) =
h

(
x − τ

�

)
1 − τh

(
x − τ

�

) , (2.29)

and regularly it exists only for a finite time. The solution (2.29) shows that the
large coefficient 1

� enters it so that the corresponding wave moves faster with the
velocity 1

� along the x-axis but the wave’s shape does not depend on � at all. For

the NLS with the initial data h̃(k) = h̃(k, β), � = β2, and the coefficient 1
� at the
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linear part, the nonlinearity balances the effect of dispersion leading to emergence
of solitons, see [6] for a discussion.

To formulate our results we introduce a Banach space E = C([0, τ∗], L1) of
functions ṽ(k, τ), 0 ≤ τ ≤ τ∗, with the norm

‖ṽ(k, τ)‖E = ‖ṽ(k, τ)‖C([0,τ∗],L1) = sup
0≤τ≤τ∗

∫
[−π,π]d

|ṽ(k, τ)| dk. (2.30)

Here L1 is the Lebesgue function space with the standard norm defined by the
formula

‖ṽ(·)‖L1 =
∫

[−π,π]d
|ṽ(k)| dk. (2.31)

The following theorem guarantees the existence and the uniqueness of a solution to
the modal evolution equation (2.3) on a time interval which does not depend on �

(see Theorem 5.4 for details).

Theorem 2.8 (Existence and Uniqueness). Let the model evolution equation
(2.3) satisfy the Condition 2.5, and let h̃ ∈ L1, ‖h̃‖L1 ≤ R. Then there exists a
unique solution Ũ = G(h̃) of (2.3) which belongs to C1([0, τ∗], L1). The number
τ∗ > 0 depends on R, Cχ and CΞ and it does not depend on �.

Now we would like to formulate the main result of this paper, a theorem on
the superposition principle, showing that the generic wavepackets evolve almost
independently for the case of lattice equations. To do that, first, we define an
important concept of wavepacket.

Definition 2.9 (Wavepacket). A function h̃(β,k) which depends on a parameter
0 < β < 1, is called a wavepacket with a center k∗ if it satisfies the following
conditions:

(i) It is bounded in L1 uniformly in β, i.e.

‖h̃(β, ·)‖L1 ≤ Ch. (2.32)

(ii) It is composed of modes from essentially a single band n, namely for any
0 < ε < 1 there is a constant Cε > 0 such that

‖h̃(k) − h̃−(k) − h̃+(k)‖L1 ≤ Cεβ, h̃ζ(k) = Πn,ζh̃(k), ζ = ±, (2.33)

and h̃ζ(β,k) is essentially supported in a small vicinity of ζk∗, where k∗ is the
wavepacket center, namely∫

|k−ζk∗|≥β1−ε

|h̃ζ(β,k)| dk ≤ Cεβ. (2.34)

(iii) The wavepacket center k∗ is not a band-crossing point, that is k∗l /∈ σ, and
the following regularity condition holds:∫

|k−ζk∗|≤β1−ε

|∇kh̃ζ(β,k)| dk ≤ Cεβ
−1−ε. (2.35)

In the above conditions (ii) and (iii), Cε does not depend on β, 0 < β < 1.
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The simplest example of a wavepacket in the sense of Definition 2.9 is a function
of the form

h̃ζ(β,k) = β−dĥζ

(
k − ζk∗

β

)
gn,ζ(k), ζ = ±, (2.36)

where ĥζ(k) is a Schwartz function, that is an infinitely smooth, rapidly decaying
function. Another typical and natural example of a wavepacket h̃ centered at k∗ is
readily provided by

h̃(β,k) = Πn,+(k)h̃0,+(β,k) + Πn,−(k)h̃0,−(β,k), (2.37)

where h̃0,ζ(β,k) is the lattice Fourier transform of the following function

h0,ζ(m, β) = eiζk∗·mΦζ(βm − r0)g, ζ = ±, (2.38)

where g is a vector in C2J , projection Πn,ζ is as in (2.19) with some n, vectors
m, r0 ∈ Rd and Φζ(r) being an arbitrary Schwartz function (see Lemma 7.2).

Our special interest is in the waves that are finite sums of wavepackets and we
refer to them as multi-wavepackets.

Definition 2.10 (Multi-Wavepacket). A function h̃(β,k), 0 < β < 1, is called
a multi-wavepacket if it is a finite sum of wavepackets h̃l as defined in Definition 2.9,
namely

h̃(β,k) =
Nh∑
l=1

h̃l(β,k), (2.39)

and we call the set {k∗l} of all the centers k∗l of involved wavepackets center set of h̃.

In what follows we will be interested in generic multi-wavepackets such that their
centers are generic. The exact meaning of this is provided below in the following
conditions.

Condition 2.11 (Non-Zero Frequency). We assume that every center k∗l of a
wavepacket satisfies the following condition

ωnl
(k∗l) 	= 0, l = 1, . . . , Nh. (2.40)

Condition 2.12 (Group Velocity). We assume that all centers k∗l, l =
1, . . . , Nh, of the multi-wavepacket h̃ as defined in Definition 2.10 are not band-
crossing points, and the gradients ∇kωnlj

(k∗lj ) (called group velocities) at these
points satisfy the following condition

|∇kωnl1
(k∗l1) −∇kωnl2

(k∗l2 )| 	= 0 when l1 	= l2, (2.41)

indicating that the group velocities are different.

We also want the functions (dispersion relations) ωnl
(k) to be non-degenerate

in the sense that they are not exactly linear, below we give exact conditions.
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Consider the following equation for n and θ

θωnl
(k∗) − ζωn(θk∗) = 0, ζ = ±1, (2.42)

where the admissible θ have the form

θ =
m∑

j=1

ζ(j), ζ(j) = ±1, m ≤ mF , (2.43)

mF is the same as in (2.21). In the case when in the series (2.21) some terms F̃ (m)

vanish, we take in (2.43) only m corresponding to non-zero F̃ (m).

Condition 2.13 (Non-Degeneracy). Given a point k∗ = k∗l and band nl we
assume that dispersion relations ωn(k) are such that all solutions n, θ of (2.42) are
necessarily of the form

n = nl, θ = ζ. (2.44)

Definition 2.14 (Generic Multi-Wavepackets). A multi-wavepacket h̃ as
defined in Definition 2.10 is called generic if the centers k∗l, l = 1, . . . , Nh, of all
wavepackets satisfy Conditions 2.11 and 2.12; and the dispersion relations ωn(k) at
every k∗l and band nl satisfy Condition 2.13.

We introduce now the solution operator G mapping the initial data h̃ into the
solution Ũ = G(h̃) of the modal evolution equation (2.3); this operator is defined
for ‖h̃‖ ≤ R according to Theorem 2.8. The main result of this paper for the lattice
case is the following statement.

Theorem 2.15 (Superposition Principle for Lattice Equations). Suppose
that the initial data h̃ of (2.3) is a multi-wavepacket of the form

h̃ =
Nh∑
l=1

h̃l, Nh max
l

‖h̃l‖L1 ≤ R, (2.45)

satisfying Definition 2.10, where h̃ is generic in the sense of Definition 2.14. Let us
assume that

β2

�
≤ C, with some C, 0 < β ≤ 1

2
, 0 < � ≤ 1

2
. (2.46)

Then the solution Ũ = G(h̃) to the evolution equation (2.3) satisfies the following
approximate superposition principle

G
(

Nh∑
l=1

h̃l

)
=

Nh∑
l=1

G(h̃l) + D̃, (2.47)

with a small remainder D̃(τ) satisfying the following estimate

sup
0≤τ≤τ∗

‖D̃(τ)‖L1 ≤ Cε
�

β1+ε
|ln β|, (2.48)

where ε is the same as in Definition 2.9 and can be arbitrary small, τ∗ does not
depend on β, � and ε.
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The most common case when (2.46) holds is � = β2, a discussion of different
scalings is provided in [6, 7].

Observe that solutions to the original evolution equation (2.1) with the initial
data (2.39), (2.38) satisfy the superposition principle if the wave vectors k∗l in
(2.38) satisfy (2.41), (2.42) and Φl are Schwartz functions. It turns out, that the
evolution of every coefficient ũn,ζ(k) of the solution as defined by (2.18) can be
accurately approximated by a solution a relevant nonlinear Schrodinger equation
(NLS), see [23]. Therefore Theorem 2.15 provides a reduction of multi-wavepacket
problem to several single-wavepacket problems.

We also would like to stress that though β is small the nonlinear effects are not
small. Namely, there can be a significant difference between solutions of a nonlinear
and the corresponding linear (with F (U) being set zero) equations with the same
initial data for times τ = τ∗.

Recall that up to now we analyzed the nonlinear evolution in the modal form
(2.3) for Ũ(k, τ). To make a statement on the nonlinear evolution for the origi-
nal evolution equation (2.1), i.e. in terms of the quantities U(m, τ), we introduce
U(h)(m) as the inverse Fourier transform of the solution G(h̃)(k) of the modal
evolution equation (2.3). Recall that the inverse Fourier transform corresponding
to (2.2) is given by the formula

U(m) = (2π)−d

∫
[−π,π]d

eim·kŨ(k) dk, (2.49)

and when applying the inverse Fourier transform we get back the original lattice
system (2.1) from its modal form (2.3). The convolution form of the nonlinearity
makes the lattice system invariant with respect to translations on the lattice Zd.
Using Theorem 2.15 and applying the inverse Fourier transform together with the
inequality

‖U‖L∞ ≤ (2π)−d‖Ũ‖L1 (2.50)

we obtain the following statement.

Corollary 2.16. Let the evolution equation (2.1) be obtained as the lattice Fourier
transform of (2.3). If h is given by (2.38) where every Φl,ζ(r) is a Schwartz function
(that is an infinitely smooth, rapidly decaying function) then U(h) is a solution to
the evolution equation (2.1). If h = h1 + · · · + hNh

and every hl is given by (2.38)
then the approximate superposition principle holds:

U(h) = U(h1) + · · · + U(hNh
) + D, (2.51)

with a small coupling remainder D(τ) satisfying

sup
0≤τ≤τ∗

‖D(τ)‖L∞ ≤ C′
δ

�

β1+δ
, (2.52)

where δ > 0 can be taken arbitrary small.
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As an application of Theorem 2.15 let us consider the Fermi–Pasta–Ulam equa-
tion (2.10). We impose the initial condition for (2.10)

xn(0) =
nh∑
l=1

Ψ0l(βn − rl)eik∗ln + cc,

(2.53)

yn(0) =
nh∑
l=1

Ψ1l(βn − rl)eik∗ln + cc, n ∈ Z,

where Ψ0l(r), Ψ1l(r) are arbitrary Schwartz functions, and rl are arbitrary real
numbers, cc means complex conjugate to the preceding terms and assume that �, β

satisfy (2.46). For any given k∗l there are two eigenvectors g±(k∗l) of the matrix
L(k∗l) in (2.12) given by (7.3) and corresponding terms in (2.53) can be written as[

Ψ0l

Ψ1l

]
eik∗ln = [Φ−,lg−(k∗l) + Φ+,lg+(k∗l)]eik∗ln.

In this case all requirements of Definition 2.10 are fulfilled, and (2.53) defines
a multi-wavepacket. Note that the multi-wavepacket (2.53) involves Nh = 2nh

wavepackets with 2nh wavepacket centers ϑk∗l, ϑ = ±. To satisfy Condition 2.12
the wavepacket centers k∗l must satisfy

cos
k∗l

2∣∣∣∣sin k∗l

2

∣∣∣∣ 	=
cos

k∗j

2∣∣∣∣sin k∗j

2

∣∣∣∣ if l 	= j. (2.54)

To check if the centers k∗l satisfy Condition 2.13 we consider the equation

z

∣∣∣∣sin k∗l

2

∣∣∣∣− ζ

∣∣∣∣sin(z
k∗l

2

)∣∣∣∣ = 0, z =
3∑

j=1

ζ(j), ζ(j) = ±1. (2.55)

Evidently the possible values of z are −3,−1, 1, 3. Since the equation 3|sin φ| =
|sin(3φ)| has the only solution φ = 0 on [0, π/2], Eq. (2.55) has the only solution
z = ζ. Consequently, all points k∗l 	= 0 satisfy Condition 2.13, and Theorem 2.15
applies. The initial data for a single wavepacket solution have the form[

xϑ,n,l(0)
yϑ,n,l(0)

]
= Φϑ,l(βn − rl)gϑ(k∗l) + cc, n ∈ Z, ϑ = ±. (2.56)

According to this theorem and Corollary 2.16 the solution to (2.10), (2.53) equals
the sum of solutions of (2.10) with single wavepacket initial data, that is

xn(τ) =
∑
ϑ=±

nh∑
l=1

xϑ,n,l(τ) + D1,n(τ), yn(τ) =
∑
ϑ=±

nh∑
l=1

yϑ,n,l(τ) + D2,n(τ),

(2.57)
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Fig. 1. In this picture, two wavepackets are shown with different “centers” k∗1 and k∗2. The val-
ues of k∗1 and k∗2 are proportional to the frequences of spatial oscillations. Though the wavepack-
ets overlap in physical space, they pass one through another in the process of nonlinear evolution
almost without interaction if their group velocities are different.

where Dn is a small remainder satisfying

sup
0≤τ≤τ∗

sup
n

[|D1,n(τ)| + |D2,n(τ)|] ≤ Cδ
�

β1+δ
(2.58)

with arbitrarily small positive δ. Hence, the following statement holds.

Theorem 2.17 (Superposition for Fermi–Pasta–Ulam Equation). If every
Φl,ζ(r) is a Schwartz function, and the wavevectors k∗l 	= 0 satisfy (2.54), then the
solution xn(τ), yn(τ) of the initial value problem for the Fermi–Pasta–Ulam equa-
tion (2.10) with multi-wavepacket initial condition (2.53) is a linear superposition
of solutions xn,l(τ), yn,l(τ) of the same equation with single-wavepacket initial con-
dition (2.56) up to a small coupling term D1,n(τ), D2,n(τ) satisfying (2.57), (2.58)
with arbitrary small δ > 0 and τ∗ which do not depend on β, �, δ.

Note that solutions xϑ,n,l(τ) with different ϑ, l resemble 2nh solitons which orig-
inate at different points rl and propagate with different group velocities. According
to (2.57), (2.58) all these soliton-like wavepackets pass through one another with very
little interaction, see Fig. 1. Note that Theorem 2.15 shows that this phenomenon is
robust in the class of general difference equations on the lattice Z, and that it per-
sists under polynomial perturbations of the nonlinearity as well as perturbations of
the linear part of Eq. (2.11) as long as they leave the linear difference operator non-
positive and self-adjoint. Observe also that the evolution of every single wavepacket
is nonlinear, and it is well-approximated by a properly constructed NLS (we intend
to write a proof of this statement for general lattice systems in another article;
see [23] for a particular case). For example, for a special choice of Ψjl the solution
xn,l(τ) can be well-approximated by a soliton solution of a corresponding NLS.
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2.2. Main statements and examples for semilinear systems

of hyperbolic PDE

In this subsection, we consider nonlinear evolution equation involving partial differ-
ential (and pseudodifferential) operators with respect to spatial variables with con-
stant coefficients in the entire space Rd. There is a great deal of similarity between
such nonlinear evolution PDE and the lattice nonlinear evolution equations con-
sidered in the previous section. In particular, we study first not the original PDE
but its Fourier transform, modal evolution equation, and the results concerning the
original PDE are obtained by applying the inverse Fourier transform.

Recall that for functions U(r) from L1(Rd) the Fourier transform and its inverse
are defined by the formulas

Û(k) =
∫

Rd

U(r)e−ir·k dr, where k ∈ Rd, (2.59)

U(r) =
1

(2π)d

∫
Rd

Û(k)eir·k dr, where r ∈ Rd. (2.60)

Similarly to (2.3) we introduce the following modal evolution equation

∂τ Û(k, τ) = − i
�
L(k)Û(k, τ) + F̂ (Û)(k, τ), Û(k, 0) = ĥ(k), k ∈ Rd, (2.61)

where (i) Û(k, τ) is a 2J-component vector-function of k, τ , (ii) L(k) is a 2J × 2J

matrix function of k, and (iii) F̂ (Û) is the nonlinearity. We assume that the 2J×2J

matrix L(k), k ∈ Rd, has exactly 2J eigenvectors gn,ζ(k) with corresponding
2J real eigenvalues ωn,ζ(k) satisfying the relations (2.13)–(2.17). We also assume
the matrix L(k), k ∈ Rd, to satisfy the polynomial bound

|L(k)| ≤ C(1 + |k|p). (2.62)

The singular set σ for L(k) is as in Definition 2.3 with the only difference that func-
tions ωn,ζ(k) are defined over Rd rather than the torus [−π, π]d, and, consequently
they are not periodic. The nonlinearity F̂ (Û) has a form entirely similar to (2.21):

F̂ (Û) =
mF∑
m=2

F̂ (m)(Ûm), (2.63)

with F̂ (m) being m-linear operators with the following representation similar
to (2.22):

F̂ (m)(Û1, . . . , Ûm)(k)

=
∫

Dm

χ(m)(k, �k)Û1(k′) · · · Ûm(k(m)(k, �k)) d̃(m−1)d�k, (2.64)
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where k(m)(k, �k) is defined by the convolution equation (2.25), d̃ is defined by (2.24)
and Dm in (2.64) is now defined not by (2.23) but by

Dm = R(m−1)d. (2.65)

The difference with (2.3) now is that the involved functions of k, k′ etc. are not
2π-periodic, Dm in (2.64) is defined by (2.65) instead of (2.23), and the tensors
χ(m)(k, �k) satisfy the nonlinear regularity Condition 2.6 without the periodicity
assumption. The functions Ûl(k(l)) in (2.64) are assumed to be from the space
L1 = L1(Rd) with the norm

‖Û(·)‖L1 =
∫

Rd

|ṽ(k)| dk. (2.66)

We seek solutions to (2.61) in the space C1([0, τ∗], L1) with 0 < τ∗ ≤ 1.
Applying the inverse Fourier transform to the modal evolution equation (2.61)

we obtain a hyperbolic 2J-component systems in Rd of the form

∂τU(r, τ) = − i
�
L(−i∇r)U(r, τ) + F (U)(r, τ), U(r, 0) = h(r). (2.67)

Note that since L(k) satisfies the polynomial bound (2.62) we can define the action
of the operator L(−i∇r) on any Schwartz function Y(r) by the formula

̂L(−i∇r)Y(k) = L(k)Ŷ(k), (2.68)

where, in view of (2.62), the order of L does not exceed p. If all the entries of L(k)
are polynomials, such a definition coincides with the common definition of the
action of a differential operator L(−i∇r). In this case L(−i∇r) defined by (2.68) is
a differential operator with constant coefficients of order not greater than p.

The properties of the modal evolution equation (2.61) are completely similar to
its lattice counterpart and are as follows. The existence and uniqueness theorem is
similar to Theorem 2.8.

Theorem 2.18 (Existence and Uniqueness). Let Eq. (2.61) satisfy conditions
(2.17) and (2.26) and h ∈ L1 = L1(Rd), ‖h̃‖L1 ≤ R. Then there exists a unique
solution to the modal evolution equation (2.61) in the functional space C1([0, τ∗], L1).
The number τ∗ depends on R, Cχ and CΞ.

Here is the main result for the semilinear hyperbolic systems of PDE which is
completely similar to Theorem 2.15.

Theorem 2.19 (Principle of Superposition for PDE Systems). Let the ini-
tial data of the modal evolution equation (2.61) be a multi-wavepacket, i.e. the sum
of Nh wavepackets ĥl as in (2.45) satisfying Definitions 2.9 and 2.10. Suppose
that �, β satisfy condition (2.46). Assume also that ĥ is generic in the sense of
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Definition 2.14. Then the solution Û = G(ĥ) to the modal evolution equation (2.61)
satisfies the approximate linear superposition principle, namely

G
(

Nh∑
l=1

ĥl

)
=

Nh∑
l=1

G(ĥl) + D̂, (2.69)

with a small remainder D̂(τ)

sup
0≤τ≤τ∗

‖D̂(τ)‖L1 ≤ Cε
�

β1+ε
|ln β|, (2.70)

where ε is the same as in Definition 2.9, τ∗ does not depend on β, � and ε. The solu-
tions U(h)(r, τ) of the space evolution equation (2.67) are obtained as the inverse
Fourier transform of G(ĥ) and they satisfy the approximate linear superposition
principle, namely

U(h) = U(h1) + · · · + U(hNh
) + D, (2.71)

with a small coupling remainder D(τ) satisfying

sup
0≤τ≤τ∗

‖D(τ)‖L∞ ≤ Cε
�

β1+ε
|ln β|, (2.72)

where ε > 0 is the same as in Definition 2.9 and can be arbitrary small.

Example 1. Sine-Gordon and Klein–Gordon Equations with Small Initial
Data. Let us consider the sine-Gordon equation (see [26])

∂2
t u = ∂2

ru − sinu (2.73)

with small initial data

u(r, 0) = βb0, ∂tu(r, 0) = βb1, β � 1. (2.74)

First, we recast this the equation into our framework by rescaling the variables

u = βU1, β2t = τ. (2.75)

Since sinβU1 = βU1− 1
6β3U3

1 +β5f(U1), where evidently f(U1) is an enitire function,
we can recast Eq. (2.73) into the following form

∂2
τU1 =

1
β4

[∂2
xU1 − U1] +

1
β2

[qU3
1 + β2f(U1)]. (2.76)

We introduce then a linear pseudodifferential operator A = (I − ∂2
x)1/2 with the

symbol (1 + k2)1/2 and rewrite Eq. (2.76) as the following system

∂τU1 =
1
β2

AU2, ∂τU2 = − 1
β2

AU1 + A−1[qU3
1 + β2f(U1)], (2.77)

with the initial data

U1(0) = h0, U2(0) = h1, (2.78)
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where h0 and h1 are assumed to be of the form

z(r, 0) = h0, p(r, 0) = h1, hj =
nh∑
l=1

Ψjl(βr − rl)eik∗l·r + cc, j = 0, 1,

(2.79)

in one-dimensional case with r = r, k = k. Evidently, the relations with the initial
data of (2.73) are

b0 = h0, b1 = Ah1.

Notice that the system (2.77) is of the form (2.67) with

� = β2, LU =
[

AU2

−AU1

]
, F (U) = F0(U) + β2F1(U), (2.80)

F0(U) = A−1

[
0

qU3
1

]
, F1(U) = A−1

[
0

f(U1)

]
.

Observe now that L has only one spectral band with the dispersion relation and
eigenvectors given by

ω(k) = (I + k2)1/2, gϑ(k) = gϑ = 2−1/2

[−iϑ
1

]
, ϑ = ±1,

and there is no band-crossing points. We use expansion in the basis g±[
Ψ0l

Ψ1l

]
eik∗l·r = [Φ+,lg+ + Φ−,lg−]eik∗l·r (2.81)

to represent initial data (2.78) and (2.79). Here Eq. (2.42) takes the form

(1 + k2
∗l)

1/2λ = ζ(1 + λ2k2
∗l)

1/2, ζ = ±1.

Obviously, this equation has only solutions λ = ζ and Condition 2.13 is fulfilled.
Condition 2.12 holds if

ϑk∗l

(1 + k2
∗l)1/2

	= ϑ′k∗l′

(1 + k2
∗l′ )1/2

for l 	= l′ or ϑ 	= ϑ′ (2.82)

which is equivalent to

k∗l′ 	= k∗l for l′ 	= l, and k∗l 	= 0 for all l. (2.83)

Equation (2.77) can be written in the integral form (3.3) with mF = ∞ and by
Theorem 5.4, it has unique solution U for τ ≤ τ∗. If we replace F (U) in (2.80) by
F0(U), we obtain

∂τV1 =
1
β2

AV2, ∂τV2 = − 1
β2

AV1 + A−1qV 3
1 , (2.84)

where we take the initial data to be as in (2.78), namely

V1(0) = h0, V2(0) = h1. (2.85)

Equations (2.84) can be obtained by replacing sinu in (2.73) by the cubic polyno-
mial u−u3/6 producing the quasilinear Klein–Gordon equation (see [36]). Observe
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that the solutions to the sine-Gordon and the Klein–Gordon equations with small
initial data are very close. To see that, note that the operator f̂(U)(k) is bounded
in L1 for Û(k) which are bounded in L1. Therefore the norm of the neglected term
is small, namely ‖β2f̂(U)‖L1 ≤ Cβ2. Thus, by Remark 4.8, the solutions of (2.77)
and (2.84) are close, namely

‖U1 − V1‖L∞ + ‖U2 − V2‖L∞ ≤ Cβ2, 0 ≤ τ ≤ τ∗. (2.86)

According to Theorem 2.19 the superposition principle is applicable to Eq. (2.84)
with initial data as in (2.85), and the following statements hold.

Theorem 2.20 (Superposition for Klein–Gordon). Assume that the initial
data h0, h1 in (2.85) are as in (2.79). Then the solution {V1, V2} to the system
(2.84) satisfies the linear superposition principle, namely

V1(r, τ) =
∑
ϑ=±

nh∑
l=1

V1,ϑ,l(r, τ) + D1(r, τ),

V2(r, τ) =
∑
ϑ=±

nh∑
l=1

V2,ϑ,l(r, τ) + D2(r, τ),

(2.87)

where {V1,ϑ,l(r, τ), V2,ϑ,l(r, τ)} is a solution to (2.84) with the one-wavepacket initial
condition [

V1,ϑ,l(r, 0)
V2,ϑ,l(r, 0)

]
= Φϑ,l(βr − rl)gϑeik∗l·r + cc, (2.88)

where Φϑ,l(r) are arbitrary Schwartz functions. If (2.83) holds, the coupling terms
D1,D2 satisfy the bound

sup
0≤τ≤τ∗

[‖D1(τ)‖L∞ + ‖D2(τ)‖L∞ ] ≤ C′
δ

�

β1+δ
= C′

δβ
1−δ, (2.89)

where τ∗ and C′
δ do not depend on β, and δ can be taken arbitrary small.

Using (2.86) we obtain a similar superposition theorem for the sine-Gordon
equation.

Theorem 2.21 (Superposition for Sine-Gordon). Assume that the initial data
h0, h1 in (2.78) are as in (2.79). Then the solution {U1, U2} to (2.77), (2.78) satisfies
the linear superposition principle, namely

U1(r, τ) =
∑
ϑ=±

nh∑
l=1

U1,ϑ,l(r, τ) + D1(r, τ),

U2(r, τ) =
∑
ϑ=±

nh∑
l=1

U2,ϑ,l(r, τ) + D2(r, τ),
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where U1,ϑ,l(r, τ), U2,ϑ,l(r, τ) is a solution of (2.77) with the one-wavepacket initial
condition [

U1,ϑ,l(r, 0)
U2,ϑ,l(r, 0)

]
= Φϑ,l(βr − rl)gϑeik∗l·r + cc, ϑ = ±,

where Φϑ,l(r) are arbitrary Schwartz functions. If (2.83) holds, the coupling terms
D1,D2 satisfy the bound (2.89).

Note that a theorem completely similar to Theorem 2.20 holds also for a gen-
eralized Klein–Gordon equation where qV 3

1 is replaced by an arbitrary polynomial
P (V1). Hence, the superposition principle holds for the sine-Gordon equation (2.73)
with a small initial data and a strongly perturbed nonlinearity as, for example, when
sin u is replaced by sin u + β−1u4 + β−2u5.

We would like to compare now our results and methods with that of [38] where
the interaction of counterpropagating waves is studied by the ansatz method. Pierce
and Wayne considered in [38] the sine-Gordon equation in the case of small initial
data which have the form of a bimodal wavepacket. In our notation it corresponds
to the case when � = β2, nh = 1 in (2.79), when two wavepackets, corresponding
to ϑ = + and ϑ = −, have exactly opposite group velocities. They proved that the
bimodal wavepacket data generate two waves which are described by two uncoupled
nonlinear Schrodinger equations with a small error. The magnitude of the error
given in [38] (which we formulate here for the solution U1 of the rescaled equation
(2.76)) is estimated by Cβ1/2 on the time interval 0 ≤ τ ≤ τ0 (or 0 ≤ t ≤ τ0β

−2).
Note that our general Theorem 2.19 when applied to the special case of the sine-
Gordon equation (2.76) provides a better estimate of the coupling error, namely
C�/β1+δ = Cβ1−δ in (2.89) with arbitrary small δ, for the same time interval.
Notice that the estimate (2.72) given in Theorem 2.19 is almost optimal, since it is
possible to construct examples when the coupling error is greater than cβ1+δ with
arbitrary small δ.

We would like to point out that the general mechanism responsible for the
wavepacket decoupling is the destructive wave interference, this mechanism is subtle
though general. We treat the destructive wave interference by taking into account
explicitly all nonlinear interactions of high-frequency waves. In our approach, we use
the exact representation of a general solution in the form of a functional-analytic
operator monomial series, every term of the series is explicitly given as a multilinear
oscillatory integral operator applied to the initial data. A key advantage of such an
approach is that it allows to estimate wavepacket coupling as a sum of contributions
of highly oscillatory terms and to get a precise estimate of magnitude of every
term. In contrast, the well-known “ansatz” approach as, for instance, in [38, 32],
requires to find a clever ansatz with consequent estimations of the “residuum” in an
appropriate norm. Our approach can naturally treat general tensorial polynomial
nonlinearities F of arbitrary large degree NF and any number of wavepackets,
whereas finding a good ansatz which allows to estimate the residuum in such a
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general situation would be difficult. For readers interested in detailed features of
one-wavepacket solutions to the sine-Gordon equations, we refer to [32, 38, 39].

Example 2. Nonlinear Schrodinger Equation. The nonlinear Schrodinger
equation (NLS) with d spatial variables [42, 16, 15] has the form

∂τz(r, τ) = i
1
�
γ(−i∇)z(r, τ) + α|z|2z(r, τ), z(r, 0) = h(r), r ∈ Rd, (2.90)

where α is a complex constant, γ(−i∇) is a second-order differential operator, its
symbol γ(k) is a real, symmetric quadratic form

γ(k) = γ(k,k) =
∑

γijkikj , γ(−i∇)z = −
∑

γij∂ri∂rj z.

To put the NLS into the framework of this paper, we introduce the following two-
component system

∂τz+(r, τ) = i
1
�
γ(−i∇)z+(r, τ) + αz−z2

+(r, τ),

∂τz−(r, τ) = −i
1
�
γ(i∇)z−(r, τ) + α∗z+z2

−(r, τ), (2.91)

z+(r, 0) = h(r), z−(r, 0) = h∗(r), r ∈ Rd,

where α∗ denotes complex conjugate to α. Obviously if z(r, τ) is a solution of
(2.90) then z+(r, τ) = z(r, τ), z−(r, τ) = z∗(r, τ) gives a solution of (2.91). Using
the Fourier transform we get from (2.90)

∂τ ẑ(k, τ) = i
1
�
γ(k)ẑ(k, τ) + α(̂z∗z2)(k, τ), k ∈ Rd. (2.92)

Now the band-crossing set σ = {k ∈ Rd : γ(k) = 0}. We assume that the quadratic
form γ is not identically zero. The Fourier transform of (2.91) takes the form of
(2.67) with

Û =
[

Û+

Û−

]
, L(k)Û =

[
γ(k) 0

0 −γ(−k)

][
Û+

Û−

]
,

ω(k) = |γ(k)|, F̂ (3)(Û3) =

[
α ̂(ẑ+(Û)ẑ+(Û)ẑ−(Û))

α∗ ̂(ẑ−(Û)ẑ−(Û)ẑ+(Û))

]
.

To satisfy the requirements of Condition 2.14 we have to take the wave vectors
k∗l /∈ σ so that

∇|γ(k∗l)| =
2γ(k∗l)
|γ(k∗l)|

γ(k∗l, ·) 	=
2γ(k∗l′)
|γ(k∗l′ )|

γ(k∗l′ , ·) if l 	= l′, (2.93)

which provides (2.41). Since

|γ(k∗l)|λ − ζ|γ(λk∗l)| = |γ(k∗l)|[λ − ζ|λ|2],
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and λ is odd, every point k∗l /∈ σ satisfies Condition 2.13. If the quadratic form γ

is not singular, that is det γ 	= 0, then condition (2.93), which ensures that group
velocities of wavepackets are different, holds when

γ(k∗l)
|γ(k∗l)|

k∗l 	=
γ(k∗l′)
|γ(k∗l′)|

k∗l′ if l 	= l′.

In this case Theorem 2.19 is applicable, and generic wavepacket solutions of the NLS
are linearly superposed and propagate almost independently with coupling O(β).
More precisely, as a corollary of Theorem 2.19 we obtain the following statement.

Theorem 2.22 (Superposition for NLS). Assume that initial data of the NLS
(2.90) have the form h = h1 + · · · + hNh

,

hl(r) = eik∗l·mΦl,+(βr − r0) + e−ik∗l·mΦl,−(βr − r0), l = 1, . . . , Nh,

where Φl,ζ(r) are arbitrary Schwartz functions. Assume also that det γ 	= 0 and the
vectors k∗l satisfy conditions

γ(k∗l) 	= 0, l = 1, . . . , Nh; k∗l 	= k∗l′ if l 	= l′.

Then solution z = z(h) is a linear superposition

z(h) = z(h1) + · · · + z(hNh
) + D

with a small coupling term D

sup
0≤τ≤τ∗

‖D(τ)‖L∞(Rd) ≤ Cδ
�

β1+δ
,

where δ > 0 can be taken arbitrary small.

We note in conclusion, that the superposition principle reduces dynamics of
multi-wavepacket solutions to dynamics of single-wavepacket solutions; we do not
study dynamics of single-wavepacket solutions in this paper. Note that the theory of
NLS-type approximations of one-wavepacket solutions of hyperbolic PDE is well-
developed, see [29, 30, 18, 40, 41, 5] and references therein. Relevance of different
group velocities of wavepackets for smallness of their interaction was noted in [29].

2.3. Generalizations

Note that in a degenerate case when the function ωnl
(k) is linear in the direction

of k∗, Eq. (2.42) for ζ = 1 has many solutions for which θ 	= ±1 and Condition 2.13
does not hold. It turns out, that if Condition 2.13 for dispersion relations ωn(k)
at k∗ is not satisfied, still we can prove our results under the following alternative
condition. We consider here the case of PDE in the entire space Rd and k ∈ Rd.
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Condition 2.23 (Complete Degeneracy). The series (2.21) has only F̃ (m) with
odd m. The wavevectors k∗l and functions ωnl

(k), l = 1, . . . , Nh, have the following
three properties:

(i) There exists δ > 0 such that for every l1 	= l2, the following inequality holds:

|∇kωnl1
(ν1k∗l1) −∇kωnl2

(ν2k∗l2)| ≥ δ, (2.94)

for any odd integers ν1, ν2 = 1, 3, . . . .

(ii) There exists δ > 0 such that νk∗l does not get in a δ-neighborhood of σ for
any odd integer ν and any l = 1, . . . , Nh.

(iii) For any positive integer odd number θ and any k∗l, for any n the following
identities hold:

∇kωn(θk∗l) = ∇kωn(k∗l), (2.95)

ωn(θk∗l) = θωn(k∗l). (2.96)

A nontrivial examples, where the above Condition 2.23 is satisfied, is given
below.

We give here a generalization of Definition 2.14.

Definition 2.24 (Generic Multi-Wavepackets). A multi-wavepacket ĥ as
defined in Definition 2.10 is called generic if (i) the centers k∗l, l = 1, . . . , Nh, of
all wavepackets satisfy Conditions 2.11 and 2.12; (ii) either the dispersion relations
ωn(k) at every k∗l and band nl satisfy Condition 2.13 or they satisfy Condition 2.23.

The statement of Theorem 2.19 remains true if Condition 2.14 is replaced by
less restrictive Condition 2.24, namely the following theorem holds.

Theorem 2.25. Let the initial data of the modal evolution equation (2.61) be a
multi-wavepacket, i.e. the sum of Nh wavepackets ĥl as in (2.45) satisfying Def-
initions 2.9 and 2.10. Suppose that (2.46) holds. Assume also that ĥ is generic
in the sense of Definition 2.24. Then the solution Û = G(ĥ) to the modal evolu-
tion equation (2.61) satisfies the approximate linear superposition principle, namely
(2.69)–(2.72) hold.

The proofs we give in this paper directly apply to more general Theorem 2.25.
Another generalization concerns the possibility to shift independently initial

wavepackets. If initial data involve parameters rl as in (2.79) it is possible to prove
that Cε in (2.48), (2.70) and (2.72) does not depend on rl ∈ Rd if the functions Ψjl

are Schwartz functions. Most of the proofs remain the same, but several statements
have to be modified, and we present proofs in a subsequent paper.
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One more generalization concerns the smoothness of initial data. It is possible
to take initial data hl(r) with a finite smoothness rather than from the Schwartz
class. Namely, consider weighted spaces L1,a with the norm

‖v̂‖L1,a =
∫

Rd

(1 + |k|)a|v̂(k)| dk, a ≥ 0. (2.97)

Obviously, large a corresponds to high smoothness of the inverse Fourier transform
v(r). Then if functions ĥl,ζ(k) have the form (2.36) with ĥζ(k) = ĥl,ζ(k) from the
class L1,a the inequality (2.70) can be replaced by

sup
0≤τ≤τ∗

‖D̂(τ)‖L1 ≤ Cε
�

β1+ε
|ln β| + Cεβ

s, (2.98)

where s > 0 and ε > 0 have to satisfy restriction s
ε < a. This generalization requires

minor modifications in the proofs and in conditions (2.33) and (2.34), Cεβ has to
be replaced by Cεβ

s. In particular, if a = 1, � = β2 and s = 1/2 the right-hand
side of (2.98) can be estimated by Cε1β

1/2−ε1 with arbitrary small ε1.
More generalizations which involve the structure of equations are discussed in

Secs. 7.3 and 7.4. Now we give an example where Condition 2.23 is applicable.

Example 3. Semilinear Wave Equation. Let us consider a semilinear wave
equation with d spatial variables

∂2
τz(r, τ) =

1
�2

∆z(r, τ) +
α

�
∂x1z

3(r, τ), r ∈ Rd, (2.99)

where ∆ is the Laplace operator, α is an arbitrary complex constant, � = β2. We
introduce the operator A =

√
−∆ which is defined in terms of the Fourier transform,

it has symbol |k|. We rewrite (2.99) in the form of a first-order system

∂τz(r, τ) =
1
�
Ap(r, τ), r ∈ Rd; (2.100)

∂τp(r, τ) = −1
�
Az(r, τ) + αA−1∂x1z

3(r, τ).

The linear operator A−1∂x1 has the symbol −ik1
|k| , it is a zero-order operator. We

rewrite (2.100) in the form of (2.67) where

U =
[

z

p

]
, −iL(−i∇r)U =

[
0 A

−A 0

][
z

p

]
, F

([
z

p

])
= α

[
0

−A−1∂x1z
3

]
.

Using the Fourier transform, we get (2.61) with

Û =
[

ẑ

p̂

]
, −iL(k)Û =

[
0 |k|

−|k| 0

][
ẑ

p̂

]
, F̂ (3)(Û3) =

−iαk1

|k| (̂z3)
[

0
1

]
,

(̂z3)(k) =
1

(2π)2d

∫
k′,k′′∈R2d;k′+k′′+k′′′=k

ẑ(k′)ẑ(k′′)ẑ(k′′′) dk′ dk′′.

Since the factor k1
|k| is uniformly bounded and smooth for |k| 	= 0, conditions (2.26)

and (2.28) are satisfied. The eigenvalues and corresponding eigenvectors of L are
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given explicitly:

ω+(k) = |k|, ω−(k) = −|k|, g+(k) = 2−1/2

[−i
1

]
, g−(k) = 2−1/2

[
i
1

]
.

(2.101)

Since the matrix L(k) is Hermitian, Condition 2.5 is satisfied. The singular set
σ consists of the single point k = 0. Note that conclusions of Theorem 2.19 are
applicable to Eq. (2.100) and consequently to (2.99). For instance, we take the
initial data for (2.100) in the form (2.79)

z(r, 0) = h0, p(r, 0) = h1, hj =
nh∑
l=1

Ψjl(βr − rl)eik∗l·r + cc, j = 0, 1,

(2.102)

where Ψ0l(r), Ψ1l(r) are arbitrary Schwartz functions, and cc means complex con-
jugate to the preceding terms. The points rl are arbitrary. Note that terms corre-
sponding to k∗l can be written using the basis (2.101) as[

Ψ0l

Ψ1l

]
eik∗l·r = [Φ+,lg+ + Φ−,lg−]eik∗l·r. (2.103)

In this case all requirements of Definition 2.9 are fulfilled. The number of initial
wavepackets for the first-order system (2.100) corresponding to initial data (2.102)
equals Nh = 2nh and there are 2Nh wavepacket centers ϑk∗l, ϑ = ±. To satisfy the
requirements of Condition 2.14 we have to take the wave vectors k∗l 	= 0 so that

ϑk∗l

|k∗l|
	= ϑ′k∗l′

|k∗l′ |
if l 	= l′ or ϑ 	= ϑ′,

which provides (2.41). Since

|k∗l|λ − ζ|λk∗l| = |k∗l|(λ − ζ|λ|),

Eq. (2.42) has solutions λ 	= ζ and every point k∗l does not satisfy Condition 2.13.
This is the property of the very special, purely homogeneous ω(k) = |k|. Checking
the second alternative, namely Condition 2.23 we observe that

∇k|νk∗l| =
νk∗l

|νk∗l|
=

ν

|ν|
k∗l

|k∗l|
.

Hence, if

ϑk∗l

|k∗l|
	= ϑ′k∗l′

|k∗l′ |
for l 	= l′ or ϑ 	= ϑ′ and if k∗l 	= 0 (2.104)

then Condition 2.23 is satisfied and Superposition Theorem 2.19 is applicable. As
a corollary of Theorem 2.19 applied to (2.99), we obtain that if the initial data for
(2.99) equal the sum of wavepackets, then the solution equals the sum of separate
solutions plus a small remainder, more precisely we have the following theorem.
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Theorem 2.26 (Superposition Principle for Wave Equation). Assume that
the initial data for (2.100) to be a multi-wavepacket of the form (2.102) and
(2.46) holds. Then the solution z(r, τ) to (2.100), (2.102) satisfy the superposition
principle, namely

z(r, τ) =
∑
ϑ=±

nh∑
l=1

zϑ,l(r, τ) + D1(r, τ), p(r, τ) =
∑
ϑ=±

nh∑
l=1

pϑ,l(r, τ) + D2(r, τ)

where zϑ,l(r, τ), pϑ,l(r, τ) is a solution of (2.100) with the initial condition[
zϑ,l(r, 0)
pϑ,l(r, 0)

]
= Φϑ,l(βr − rl)gϑeik∗l·r + cc, (2.105)

with Φϑ,l(r) being arbitrary Schwartz functions. If (2.104) holds, the coupling terms
D1 and D2 satisfy the bound

sup
0≤τ≤τ∗

[‖D1(τ)‖L∞ + ‖D2(τ)‖L∞ ] ≤ C′
δ

�

β1+δ
, (2.106)

where τ∗ and C′
δ do not depend on β,� and δ can be taken arbitrary small.

In the following sections, we introduce concepts and develop analytic tools
allowing to prove the approximate linear superposition principle as stated in
Theorems 2.15, 2.19 and 2.25.

3. Reduced Evolution Equation

Since the properties of the evolution equations (2.3) and (2.61) are very similar, we
consider here in detail the lattice evolution equation (2.3) with understanding that
all the statements apply to the PDE (2.61) if we replace Ũ with Û, [−π, π]d with
Rd, the function space L1 = L1([−π, π]d) with L1 = L1(Rd) and so on.

First, using the variation of constants formula we recast the modal evolution
equation (2.3) into the following equivalent integral form

Ũ(k, τ) =
∫ τ

0

e
−i(τ−τ′)

� L(k)F̃ (Ũ)(k, τ) dτ ′ + e
−iζτ

� L(k)h̃(k), τ ≥ 0. (3.1)

Then we introduce for Ũ(k, τ) its two-time-scale representation (with respectively
slow and fast times τ and t = τ

� )

Ũ(k, τ) = e−
iτ
� L(k)ũ(k, τ), Ũn,ζ(k, τ) = ũn,ζ(k, τ)e−

iτ
� ζωn(k), (3.2)

where ũn,ζ(k, τ) are the modal coefficients of ũ(k, τ) (see (2.18)); note that
ũn,ζ(k, τ) may depend on �, therefore (3.2) is just a change of variables. Conse-
quently we obtain the following reduced evolution equation for ũ = ũ(k, τ), τ ≥ 0,

ũ(k, τ) = F(ũ)(k, τ) + h̃(k), F(ũ) =
mF∑
m=2

F (m)(ũm(k, τ)), (3.3)

F (m)(ũm)(k, τ) =
∫ τ

0

e
iτ′
� L(k)F̃ (m)((e

−iτ′
� L(·)ũ)m)(k, τ ′) dτ ′, (3.4)
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where the quantities F̃ (m) are defined by (2.21) and (2.22) in terms of the suscep-
tibilities χ(m).

The norm of the oscillatory integral F (m) in (3.4) is estimated in terms of the
norm of the tensor χ(m)(k, �k) defined in (2.26) and (2.27). The operator F (m) is
shown to be a bounded one from (E)m into E; see Lemma 5.1 for details. The proof
of this property is based on the following Young inequality for the convolution

‖ũ ∗ ṽ‖L1 ≤ ‖ũ‖L1‖ṽ‖L1 . (3.5)

For a detailed analysis of solutions of (3.3) we recast Eq. (3.3) for ũ(k, τ) using
projections (2.19) as the following expanded reduced evolution equation

ũn,ζ(k, τ) =
∞∑

m=2

∑

n,
ζ

F (m)

n,ζ,
n,
ζ
(ũm)(k, τ) + hn,ζ(k), τ ≥ 0, (3.6)

for the modal coefficient ũn,ζ(k, τ). In the above formula and elsewhere, we use
notations

�n = (n′, . . . , n(m)), �ζ = (ζ′, . . . , ζ(m)), �k = (k′, . . . ,k(m)). (3.7)

The operators F (m)

n,ζ,
n,
ζ
are m-linear oscillatory integral operators defined by the

formulas

F (m)

n,ζ,
n,
ζ
(ũ1 · · · ũm)(k, τ) =

∫ τ

0

∫
Dm

exp
{

iφn,ζ,
n,
ζ(k, �k)
τ1

�

}
χ

(m)

n,ζ,
n,
ζ
(k, �k)[ũ1(k′, τ1), . . . , ũm(k(m)(k, �k), τ1)] d̃(m−1)d�kdτ1,

(3.8)

where we use notations (2.23)–(2.25). In (3.8), the interaction phase function φ is
defined by

φn,ζ,
n,
ζ(k, �k) = ζωn(k) − ζ′ωn′(k′) − · · · − ζ(m)ωn(m)(k(m)), k(m) = k(m)(k, �k)

(3.9)

and the susceptibilities χ
(m)

n,ζ,
n,
ζ
(k, �k) are m-linear symmetric tensors (i.e. mappings

from (C2J)m into C2J) defined for almost all k, �k by the following formula

χ
(m)

n,ζ,
n,
ζ
(k, �k)[ũ1(k′), . . . , ũm(k(m))]

= Πn,ζ(k)χ(m)(k, �k)[Πn′,ζ′(k′)ũ1(k′), . . . , Πn(m),ζ(m)(k(m)(k, �k))

× ũm(k(m)(k, �k))]. (3.10)

For the lattice equation, χ
(m)

n,ζ,
n,
ζ
(k, �k) is 2π-periodic with respect to every vari-

able k,k′, . . . ,k(m). Note that operators F (m)(um) in (3.3) can be rewritten using
(3.8) as

F (m)(um) =
∑

n,
ζ

F (m)

n,ζ,
n,
ζ
(ũm). (3.11)

We also call operators F (m)

n,ζ,
n,
ζ
decorated operators.
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Remark 3.1. The expanded reduced evolution equation (3.6) is instrumental to
the nonlinear analysis. Its very form, a convergent series of multilinear forms which
are oscillatory integrals (3.8), is already a significant step in the analysis of the
solution accomplishing several tasks: (i) it suggests a constructive representation
for the solution; (ii) every term F (m)

n,ζ,
n,
ζ
can be naturally interpreted as nonlinear

interaction of the underlying linear modes; (iii) the representation of F (m)

n,ζ,
n,
ζ
as the

oscillatory integral (3.8) involving the interaction phase φn,ζ,
n,
ζ and the suscepti-

bilities χ
(m)

n,ζ,
n,
ζ
(k, �k) directly relates F (m)

n,ζ,
n,
ζ
to the terms of the original evolution

equation as well as to physically significant quantities. We can also add that since
we consider � → 0, the interaction phase function φn,ζ,
n,
ζ(k, �k) plays the decisive
role in the analysis of nonlinear interactions of different modes.

The analysis of fundamental properties of the reduced evolution equation
(3.6), including, in particular, the linear modal superposition principle, involves
and combines the following three components: (i) the linear spectral theory com-
ponent in the form of the modal decomposition of the solution and introduc-
tion of wavepackets as elementary waves; (ii) function-analytic component which
deals with the structure of series similar to the one in (3.6) and its depen-
dence on the nonlinearity of the original evolution equation; (iii) asymptotic
analysis of oscillatory integrals (3.8) which allows to estimate the magnitude of
nonlinear interactions between different modes and, in particular, to show that
generically different modes almost do not interact leading to the superposition
principle.

Sometimes it is convenient to rewrite (3.8) in a slightly different form. The
convolution integral (3.8) according to (2.25) involves the following phase matching
condition

k′ + · · · + k(m) = k. (3.12)

Using the following notation for the integral over the plane (3.12)∫
k′,...,k(m−1)∈[−π,π](m−1)d;k′+···+k(m)=k

f(k, �k) dk′ · · · dk(m−1)

=
∫

[−π,π]md

f(k, �k)δ(k − k′ − · · · − k(m)) dk′ · · · dk(m) (3.13)

in terms of a delta-function, we can rewrite (3.8) in the form

F (m)

n,ζ,
n,
ζ
(ũ1 · · · ũm)(k, τ) =

1
(2π)m(d−1)

∫ τ

0

∫
[−π,π]md

exp
{

iφn,ζ,
n,
ζ(k, �k)
τ1

�

}
· δ(k − k′ − · · · − k(m))χ(m)

n,ζ,
n,
ζ
(k, �k)ũ1,ζ′(k′) · · · ũm,ζ(m)(k(m)) dk′ · · · dk(m)dτ1.

(3.14)
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4. Function-Analytic Operator Series

In this section necessary algebraic concepts required for the analysis are introduced.
We study the reduced evolution equation (3.3) as a particular case of the following
abstract nonlinear equation in a Banach space

u = F(u) + x, F(u) =
∞∑

s=2

F (s)(xs), (4.1)

where the nonlinearity F(u) is an analytic operator represented by a convergent
operator series. It is well known (see [25]) that the solution u = G(x) of such
equation can be represented as a convergent series in terms of m-linear operators
Gm which are constructed based on F :

G(x) = G(F ,x) =
∞∑

m=1

G(m)(xm), G(m)(xm) = G(m)(F ,xm), where

xm = x · · ·x︸ ︷︷ ︸ .
m times

Using the multilinearity of G(m) we readily obtain the formula

G(x1 + · · · + xN ) =
∞∑

m=1

G(m)((x1 + · · · + xN )m)

=
∞∑

m=1

G((x1)m) + · · · +
∞∑

m=1

G((xN )m) + GCI(x1, . . . ,xN ), (4.2)

where x = x1+ · · ·+xN represents a multi-wavepacket and GCI(x1, . . . ,xN ) collects
all “cross terms” and describes the “cross interaction” (CI) of involved wavepackets
x1, . . . ,xN . We will find in sufficient detail the dependence of the solution operators
Gm on the nonlinearity F and prepare a basis for the consequent estimation of non-
linear interactions between different modes and wavepackets. Then combining the
facts about the structure of the solution operators G(m) with asymptotic estimates of
relevant oscillatory integrals we show that for a multi-wavepacket x = x1 + · · ·+xN

the cross interaction term satisfies the following estimate

‖GCI(x1, . . . ,xN )‖ = O(β) + O(�|ln β|/β1+ε), β, � → 0,

implying the modal superposition principle.

4.1. Multilinear forms and polynomial operators

The analysis of nonlinear equations of the form (3.3) requires the use of appropriate
Banach spaces of time dependent fields, as well as multilinear and analytic functions
in those spaces. It also uses an appropriate version of the implicit function theorem.
For the reader’s convenience we collect in this section the known concepts and
statements on the above-mentioned subjects needed for our analysis. In this section,
we consider functional-analytic operators which are defined in a ball in a Banach
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space X with the norm ‖x‖X . In our treatment of the analytic functions in infinitely-
dimensional Banach spaces we follow to [25, Sec. 3] and [21].

Definition 4.1 (Polylinear Operator). Suppose that x1,x2, . . . ,xn are vectors
in a Banach space X . Let a function F (n)(�x), �x = (x1, . . . ,xn), take values in X

and be defined for all �x ∈ Xn. Such a function F (n) is called a n-linear operator
if it is linear in each variable, and it is said to be bounded if its following norm is
finite

‖F (n)‖ = sup
‖x1‖X=···=‖xn‖X=1

‖F (n)(x1x2 · · ·xn)‖X < ∞. (4.3)

Definition 4.2 (Polynomial). A function P (x) from X to X defined for all x ∈ X

is called a polynomial in x of degree n if for all a,h ∈ X and all complex α

P (a + αh) =
n∑

ν=0

Pν(a,h)αν ,

where Pν(a, h) ∈ X are independent of α. The degree of Pn is exactly n if Pn(a, h)
is not identically zero. A polynomial F(x) is a homogeneous polynomial of a degree
n if for all c ∈ C

F(cx) = cnF(x).

Then n is called also the homogeneity index of F(x). A homogeneous polynomial
F is called bounded if its norm

‖F‖∗ = sup
‖x‖X=1

{‖F(x)‖X} (4.4)

is finite. For a given n-linear operator F (n)(�x) = F (n)(x1x2 · · ·xn) we denote by
F (n)(xn) a homogeneous of degree n polynomial from X to X :

F (n)(xn) = F (n)(x · · ·x). (4.5)

Note the norm definitions (4.3)–(4.5) readily imply

‖F (n)‖∗ ≤ ‖F (n)‖. (4.6)

Definition 4.3 (Analyticity Class 1). Let a function F be defined by the fol-
lowing convergent series

F(x) =
∞∑

m=2

F (m)(xm) for ‖x‖X < R∗F , (4.7)

where F (m)(xm), m = 2, 3, . . . is a sequence of bounded m-homogenious polynomi-
als satisfying

‖F (m)‖∗ ≤ C∗FR−m
∗F , m = 2, 3, . . . . (4.8)

Then we say that F(x) belongs to the analyticity class A∗(C∗F , R∗F) and write
F ∈ A∗(C∗F , R∗F).
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Notice that for ‖x‖X < R∗F , we have

‖F(x)‖X ≤ C∗F
∞∑

n=2

‖x‖n
XR−n

∗F ≤ C∗F
‖x‖n0

X R−n0
∗F

1 − ‖x‖XR−1
∗F

, (4.9)

implying, in particular, the convergence of the series (4.7).

Definition 4.4 (Analyticity Class 2). If F (m)(�x), m = 2, 3, . . . , is a sequence
of bounded m-linear operators from Xm to X and

‖F (m)‖ ≤ CFR−m
F , m = 2, 3, . . . , (4.10)

we say that a function F defined by the series (4.7) for ‖x‖X < RF belongs to the
analyticity class A(CF , RF ) and write F ∈ A(CF , RF ).

In this paper we will use operators from the classes A(CF , RF ) based on multi-
linear operators.

Note that evidently A(CF , RF) ⊂ A∗(CF , RF). One can construct a polynomial
based on a multilinear operator according to the formula (4.5). Conversely, the con-
struction of a multilinear operator, called polar form, based on a given homogeneous
polynomial is described by the following statement, [21, Secs. 1.1 and 1.3] and [25,
Sec. 26.2].

Proposition 4.5 (Polar Form). For any homogeneous polynomial P (n)(x) of
degree n, there is a unique symmetric n-linear operator P̃ (n)(x1x2 · · ·xn), called
the polar form of Pn(x), such that P (n)(x) = P̃ (n)(x · · ·x). It is defined by the
following polarization formula:

P̃ (n)(x1x2 · · ·xn) =
1

2nn!

∑
ξj=±1

P (n)

(
n∑

j=1

ξjxj

)
. (4.11)

In addition to that, the following estimate holds:

‖Pn‖∗ ≤ ‖P̃n‖ ≤ nn

n!
‖Pn‖∗ ≤ en‖P (n)‖∗. (4.12)

Since by Definition 4.4 functions from A(C, R) have zero of the second-order
at zero, their Lipschitz constant is small in a vicinity of zero. More exactly, the
following statement holds.

Lemma 4.6 (Lipschitz Estimate). If F ∈ A(CF , RF), then

‖F(x) −F(y)‖ ≤ CFC‖x − y‖(‖x‖ + ‖y‖) for ‖x‖, ‖y‖ ≤ R′
F < RF , (4.13)

where C > 0 depends on R′
F and RF .
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4.2. Implicit Function Theorem and expansion of operators into

composition monomials

Here we provide a version of the Implicit Function Theorem, first we formulate clas-
sical implicit function theorem for equations u = F(u) + x with analytic function
F and then we present a refined implicit function theorem. The refined implicit
function theorem we prove here produces expansion of the solution u into a sum
of terms which are multilinear not only with respect to x but also with respect
to F . The formulation of the theorem and the proof involve convenient labeling
of the terms of the expansion (called composition monomials), and we use prop-
erly introduced trees to this end. The explicit expansion produced by the refined
implicit function theorem is required to be able to take into account rather subtle
mechanisms which lead to the superposition principle.

Let us consider the abstract nonlinear equation (4.1) and its solution u = u(x)
for small ‖x‖ when the nonlinear operator F belongs to the class A(CF , RF). We
seek the solution u in the following form

u = G(F ,x) =
∞∑

m=1

G(m)(xm) for sufficiently small ‖x‖, (4.14)

and we call G the solution operator for (4.1). It readily follows from (4.1) that

G(F ,x) = x + F(G(F ,x)) (4.15)

and
∞∑

m=1

G(m)(xm) = x +
∞∑

s=2

F (s)

(( ∞∑
m=1

G(m)(xm)

)s)
. (4.16)

From the above equation we can deduce recurrent formulas for multilinear operators
G(m). Indeed for m = 1, the linear term is the identity operator

G(1)(x) = F (1)(x) ≡ x. (4.17)

For m ≥ 2, we write the following recurrent formula

G(m)(x1 · · ·xm) =
m∑

s=2

∑
i1+···+is=m

F (s)(G(i1)(x1 · · ·xi1 ) · · · G(is)(xm−is+1 · · ·xm)).

(4.18)

By the construction, if multilinear operators G(i) are defined by (4.18), then (4.16)
is satisfied. Namely, expanding right-hand side of (4.16) using multilinearity of F (s)

we obtain a sum of expressions as in right-hand side of (4.18), and since (4.18) holds,
terms in the left-hand side of (4.16) with given homogeneity index p cancel with
the terms in the right-hand side with the same homogeneity. Note that in (4.18) we
do not assume that the operators F (s) and G(i) are symmetrized and the order of
variables is important; we prefer to treat F (s) and G(m) as multilinear operators of
s and m variables, respectively. Though, when we apply constructed G(i) to solve
(4.1), we set x1 = · · · = xm.
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The following implicit function theorem holds (see [4] and Theorem 4.25 below
with a similar proof).

Theorem 4.7 (Implicit Function Theorem). Let F ∈ A(CF , RF). Then there
exists a solution u = x + G(F ,x) of Eq. (4.1) u = x + F(u), given by the solution
operator G ∈ A(CG , RG), where we can take

CG =
R2

F
2(CF + RF)

, RG =
R2

F
4(CF + RF)

, (4.19)

the series (4.14) converges for ‖x‖X < RG . The multilinear operators G(m)(�x) sat-
isfy the recursive relations (4.17) and (4.18).

Note that uniqueness of the solution and continuous dependence on parameters
follows from Lemma 4.6 and from a standard observation which we formulate in
the following remark.

Remark 4.8. If u1,u2 are two solutions of Eq. (4.1) with x = x1,x2respectively
and ‖u1‖, ‖u2‖ ≤ R, and F(u) is Lipschitz continuous for ‖u‖ ≤ R with a Lipschitz
constant q < 1 then ‖u1 − u2‖ ≤ (1− q)−1‖h1 − h2‖. If u1,u2 are two solutions of
Eq. (4.1) with F = F0 and F = F0 +F1 respectively, ‖u1‖, ‖u2‖ ≤ R, and F(u) is
Lipschitz continuous for ‖u‖ ≤ R with a Lipschitz constant q < 1 and F1(u) ≤ ε

when ‖u‖ ≤ R then ‖u1 − u2‖ ≤ ε(1 − q)−1 .

Observe that every term G(il) in (4.18), in turn, can be recast as a sum (4.18)
with m replaced by il < m. Evidently, applying the recurrent representation (4.18)
and multilinearity of F (s), we can get a formula for G(m) as a sum of terms involving
exclusively (i) the symbols F (m), (ii) variables xj and (iii) parentheses. We will refer
to the terms of such a formula as composition monomials. To be precise we give
below a formal recursive definition of composition monomials. The monomials are
expressions which involve variables uj , j = 1, 2, . . . , and m-linear operators F (m),
m = 2, 3, . . . , and are constructed by induction as follows.

Definition 4.9 (Composition Monomials). Let {F (s)}∞s=2 be a sequence of
s-linear operators which act on variables uj , j = 1, 2, . . . . A composition monomial
M of rank 0 is the identity operator, namely M(uj) = uj , and its homogeneity
index is 1. A composition monomial M of a non-zero rank r ≥ 1 has the form

M(ui0 · · ·uis) = F (s)(M1(ui0 · · ·ui1) · · ·Ms(uis−1+1 · · ·uis)), (4.20)

where M1(ui0 · · ·ui1), M2(ui1+1, · · ·ui2), . . . , Ms(uis−1+1 · · ·uis), with 1 ≤ i0 < i1
< · · · < is, are composition monomials of ranks not exceeding r−1 (submonomials)
and at least one of the rank r − 1, the homogeneity index of Mj equals ij − ij−1.
For a composition monomial M the operator F (s) in its representation (4.20) is
called its root operator. The index of homogeneity of M defined by (4.20) equals
im − i0 + 1. We call the labeling of the arguments of a composition monomial M

defined by (4.20) by consecutive integers standard labeling if i0 = 1.
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If the monomials M1, . . . , Ms have the respective homogeneity indexes ν(Mi)
then we readily get that the homogeneity index of the monomial M satisfies the
identity

ν(M) = ν(M1) + · · · + ν(Ms). (4.21)

Using the formula (4.20) inductively we find that any composition monomial M

is given by a formula which involves symbols from the set {F (s)}∞s=2, arguments
ui and parentheses, and if s-linear operators are substituted as F (s) we obtain the
terms contained in the expansion of G(m).

Definition 4.10 (Incidence Number). The total number of symbols F (q)

involved in M is called the incidence number for M .

For instance, the expression of the form

M = F (4)(u1u2u3F (3)(u4F (2)(u5u6)F (3)(u7u8u9))) (4.22)

is an example of a composition monomial M of rank 3, incidence number 4
and homogeneity index 9. It has three submonomials. Namely, the first one is
F (3)(u4F (2)(u5u6)F (3)(u7u8u9)) of rank 2 and incidence number 3. The second
submonomial F (2)(u5u6) has rank 1 and incidence number 1, and the third one is
F (3)(u7u8u9) of rank 1 and incidence number 1.

When analyzing the structure of composition monomials we use basic concepts
and notation from the graph theory, namely, nodes, trees and subtrees.

Definition 4.11 (Nodes, Tree, Subtree). A (finite) directed graph T consists
of nodes Ni ∈ NT where NT is the set (finite) of nodes of T and a set of edges
NiNj ∈ NT × NT . An edge NiNj connects Ni with Nj , it is an outcoming edge
of Ni and an incoming edge of Nj . A tree (more precisely a rooted tree, we only
consider rooted trees) is a directed connected graph which is cycle-free and has a
selected root node, that is a node N∗ which has no incoming edges. If a node N

has an outcoming edge NNj the node Nj is called a child node of N ; if a node N

has an incoming edge NjN the node Nj is called the parent node of N . We denote
the parent node of N by p(N). If a node does not have children it is called an end
node (or a leaf). For every node N , we denote by µ(N) the number of child nodes
of the node N. If a path connects two nodes, we call the number of edges in the
path its length. We denote by l(N) the length of a path which connects N∗ with N .
Every node N of the tree T can be taken as a root node of a subtree which involves
all descendent nodes of N and connecting edges; we denote this maximal subtree
T ′(N). Since we consider only maximal subtrees we simply call them subtrees. We
call by the rank of a tree the maximal length of a path from its root node to an
end node and denote it by r(T ). We call by the rank of a node N of the tree T the
rank of the subtree T ′(N).

Definition 4.12 (Tree Incidence Number and Homogeneity Index). For a
tree T we call the number of non-end nodes incidence number i = i(T ). We denote
the number of end nodes of the tree by ν(T ) and call it homogeneity index.
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Elementary Properties of Trees. Since a tree does not have cycles, the path
connecting two nodes on a tree is unique. The root node N∗ does not have a parent
node, and since it is connected with every other node, every non-root node has a
parent node. The end nodes have zero rank. The only node with rank r(T ) is the
root node. The total number of nodes of a tree T equals m(T ) + i(T ).

Definition 4.13 (Ordered Tree). A tree is called an ordered tree if for every
node N all child nodes of N are labeled by consecutive positive integers (which
may start not from 1). Hence, for any node N ′ 	= N∗ there is the parent node
N = p(N ′) and the order number (label) o(N ′), i1 ≤ o(N ′) ≤ i1 + µ(N) − 1.
Two trees are equal if there is one-to-one mapping Θ between the nodes which
preserves edges, maps the root node into the root node and preserves the order of
children of every node up to a shift: if Θ(N) = Ñ and p(N1) = p(N2) = N then
o(N1) − o(N2) = o(Θ(N1)) − o(Θ(N2)).

Since we use in this paper only ordered trees we simply call them trees.

Standard Node Labeling and Ordering. We use the following way of labeling
and ordering of end nodes of a given ordered tree T . Let r̂ be the rank of T . For
any end node N we take the unique path N∗N1 · · ·Nl(N)−1N of length l(N) ≤ r̂

connecting it to the root. Since the tree is ordered, every node Nj in the path has
an order number o(Nj). These order numbers form a word w(N) of length l(N). If
l(N) < r̂ we complete w(N) to the length r̂ adding several symbols ∞ and assuming
that ∞ > n for n = 1, 2, . . . . After that we order words w(N) in the lexicographic
order. We obtain the ordered list w1(N1), . . . , wν(T )(Nν(T )). We take this ordering
and labeling of the end nodes N1, . . . , Nν(T ) as a standard ordering and denote
by o0(N) the consecutive number with respect to this labeling: j = o0(Nj). To
label the nodes with rank r we delete all the nodes of rank less than r together
with the incoming edges and nodes of rank r become end nodes. We apply to them
the described labeling and denote the indexes obtained by or(N). Hence, every
node N of the tree T has two integer numbers assigned: r(N) and or(N)(N). We
introduce the standard labeling of all nodes of T by applying the lexicographic
ordering to pairs (r(N), or(N)(N)), and denote the corresponding number o(N),
1 ≤ o(N) ≤ m(T ) + i(T ).

The following statement follows straightforwardly from the definition of the
standard ordering.

Proposition 4.14. If a tree T has a subtree T ′ and the standard labeling of end
nodes is used, then all the end nodes of the subtree T ′ fill an interval j1 ≤ o0(N) ≤ j2
for some j1 and j2.

Theorem 4.15. Let T2 be the set of ordered trees such that each node of a tree
which is not an end node has at least two children nodes. The set of composition
monomials based on {F (s), s = 2, 3, . . .} is in one-to-one correspondence with the
set T2. The correspondence has the following properties. The monomials of rank r
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correspond to trees of rank r. The root node of the tree T corresponds to the root
operator of the composition monomial. The end nodes correspond to variables uj,
j = 1, . . . , ν(T ). The standard labeling of end nodes coincides with the consecutive
labeling of the variables uj of monomial from left to right. The homogeneity index of
a monomial equals the homogeneity index of the corresponding tree. The incidence
number of a monomial equals the incidence number of a tree, and the rank of a
monomial equals the rank of a tree.

Proof. For a given {F (s)} the set of monomials with rank r is finite, the set of
trees with rank r is finite too. Therefore, to prove one-to-one correspondence of the
two sets it is sufficient to construct two one-to-one mappings from the first set into
the second and from the second into the first. First of all, using the induction with
respect to r we construct for every monomial the corresponding tree. Let r = 0.
A monomial of rank 0 has the form u1, and it corresponds to a tree involving one
node. The tree has no edges and the node is the both the root and the end node;
its incidence number is zero and homogeneity power is one. Assume now that we
have defined a tree for any monomial of rank not greater than r − 1. A monomial
of rank r has the form F (m)(M1 · · ·Mm) where monomials M1 · · ·Mm have rank
not greater than r − 1. Every monomial M1 · · ·Mm corresponds to an ordered tree
T1, . . . , Tm with the root nodes N∗1, . . . , N∗m. We form the tree T as a union of
the nodes of T1, . . . , Tm and add one more node N∗ which corresponds to the root
operator F (m) and it becomes the root node of T . We take the union of edges from
T1, . . . , Tm and add m more edges connecting N∗ with the nodes N∗1, . . . , N∗m, the
order of the nodes corresponds to ordering of M1 · · ·Mm from left to right. The
first mapping is constructed.

Now let us define for every ordered tree T the corresponding monomial M(F , T ).
If we have a tree T of rank zero we set M(F , T ) = uj and j = 1 if we use the
standard labeling. Now we do induction step from r − 1 to r. If we have a tree
of rank r we take the root node N∗ and its children N∗1, . . . , N∗s, s = µ(N∗).
The subtrees T ′(N∗1), . . . , T ′(N∗s) have rank not greater than r − 1 and the
monomials M(F , T ′(N∗1)), . . . , M(F , T ′(N∗s)) are defined according to induction
assumption, let m(T ′(N∗1)), . . . , m(T ′(N∗s)) be their homogeneity indices. We set
m(T ) = m(T ′(N∗1)) + · · · + m(T ′(N∗s)). We denote the variables of every mono-
mial M(F , T ′(N∗j)) by uj,1, . . . ,uj,m(T ′(N∗j)) counting from left to right, and then
labeling all the variables uj,l using the lexicographic ordering of pairs j, l we obtain
variables u1, . . . ,um(T ) and monomials

M(F , T ′(N∗1))(u1, . . . ,um(T ′(N∗1))), M(F , T ′(N∗2))(um1+1, . . . ,um1+m2),

etc., where mj = m(T ′(N∗j)). After that we set

M(F , T )(u1, . . . ,um(T ))

= F (s)(M(F , T ′(N∗1))(u1, . . . ,um(T ′(N∗1))), . . . , M(F , T ′(N∗s))

× (um(T )−ms−1+1, . . . ,um(T ))).
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Note that the homogeneity index for the monomial M equals the sum of the indices
for submonomials M1 · · ·Mm, the homogeneity index for the tree T equals the
sum of the indices for subtrees T1, . . . , Tm, this implies their equality by induction.
The incidence number for the monomial M equals the sum of the numbers for
submonomials M1 · · ·Mm plus one; the incidence number for the tree T equals
the sum of the numbers for submonomials T1, . . . , Tm plus one. Therefore, these
quantities for monomials and trees are equal by induction. Induction is completed.
Therefore we constructed the two mappings, one can easily check that they are
one-to-one and have all required properties.

Definition 4.16 (Monomial to a Tree). For a tree T ∈ T2, we denote by
M(F , T ) the monomial which is constructed in Theorem 4.15.

Conclusion 4.17. The above construction shows that the structure of every com-
position monomial is completely described by an (ordered) tree T with nodes Ni

corresponding to the operators F (mi). At such a node Ni (i) the number mi of
outcoming edges equals the homogeneity index of F (mi); (ii) the outcoming edges
are in one-to-one correspondence with the arguments of F (mi), and the ordering
of the child nodes coincides with the ordering of arguments of F (mi) from left to
right. The value of mi may be different for different nodes. A node corresponding
to F (m) is connected by edges with m child nodes corresponding to the arguments
of F (m). Every node N of the tree T can be taken as a root node of a subtree T ′(N)
which correspond to a submonomial M(F , T ′(N)). Conversely, every submonomial
of M(F , T ) equals M(F , T ′(N)) for some mode N . If m > 1 the submonomial has
a non-zero rank. The number of non-end nodes equals to the number of symbols
F (m) used in F -represenation of the monomial which is the incidence number of the
monomial. The total number of end nodes of an m-homogeneous operator equals
to m = ν(T ). The rank of a node N equals the rank of the corresponding sub-
monomial M(F , T ′(N)). The arguments u1, . . . ,us of a monomial correspond to
the end nodes of the tree. The standard labeling of nodes of T agrees with the stan-
dard labeling (from left to right) of the arguments of the composition monomial
M(F , T ). The number of end nodes of the tree T equals the homogeneity index
of corresponding monomial. If the root mode of the tree T of a monomial M has
µ(N∗) = m edges which are connected to child nodes N1, . . . , Nm, then there is a
node F (mj), j = 1, . . . , n at the end of every edge such that M has the form

F (m)(F (µ(N1))(· · ·), . . . ,F (µ(Nm))(· · ·)). (4.23)

Example 4.18. The tree corresponding to F (3)(u1u2F(u1u2u3)) has two nodes
of non-zero rank, the root node of rank 2, one non-end node of rank 1 and five
end nodes of rank 0. Another example, the monomial (4.22) has the root node
corresponding to F (4), four edges lead respectively to nodes corresponding to the
end nodes with u1, u2, u3 and to the non-end node with F (3), see Fig. 2.
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Fig. 2. In this picture, a tree corresponding to a monomial is drawn.

Remark 4.19. Since all operators in the set {F (s)}∞s=2 in (4.18) have the homo-
geneity index at least two, the trees of monomials generated by recurrent relations
(4.18) have a special property: every non-end mode has at least two children.

Sometimes it is convenient to use monomials involving several types of oper-
ators. To describe such a situation we introduce for a given tree a decorated
monomial.

Definition 4.20 (Decorated Monomial of a Tree). Assume that we have
several formal series {F1, . . . ,Fl} where Fi is represented by a formal series
Fl =

∑
m F (m)

i , i = 1, . . . , l. We call the set {F} = {Fj , j = 1, . . . , S} the operator
alphabet, and j is called the decoration index. We consider a function Γ(N), N ∈ T ,
defined on the nodes of the tree T and taking values in the set {1, . . . , l} of the dec-
oration indices, and call such a function a decoration function on the tree T . Then
for a decoration function Γ(N) we define the decorated monomial M({F}, Γ, T )
of the tree T by picking operators F (m)

j with j defined by Γ. For every node N

the homogeneity index m = µ(N) of the operator F (m)
j equals to the number of

children of N and j is defined by Γ, namely Fj, j = Γ(N).

Hence, a decorated monomial M({F}, Γ, T ) has instead of (4.23) the follow-
ing form

F (m)
Γ(N)

(
F (µ(N1))

Γ(N1)
(· · ·), . . . ,F (µ(Nm))

Γ(Nm) (· · ·)
)

. (4.24)

When F (m)
i are multilinear operators, a monomial M({F}, T, Γ) is also a multilinear

operator, its homogeneity index m equals ν(T ) and we denote its arguments by
(x1 · · ·xm). Respectively, if x1 · · ·xν are arguments of a monomial M({F}, T, Γ)
and we use the standard labeling of the nodes then according to Proposition 4.14
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a submonomial M({F}, T, Γ) has arguments xκ(T ′), . . . ,xκ(T ′)+ν(T ′)−1 which are
labeled constructively.

Now we would like to describe elementary properties of composition monomials
and the related trees. Note that for every N ∈ T a composition monomial is a linear
function of operator Fµ(N)

Γ(N) . Consequently, the concept of the decorated composition
monomial can be naturally extended to monomials associated with the following
family of operators

{F} = {F : F = c1F1 + · · · + clFl, ci ∈ C}.

For a given tree T the submonomial M({F}, Γ, T ) is represented as a function
on the tree T with values in {F}, this is an i-linear function of F where i is the
incidence number of T .

There are elementary relations between the incidence number i(T ), the rank
r(T ), the number of edges of a tree T which do not end at an end node e0(T ) and
the homogeneity index m of a tree T , and corresponding monomial M({F}, Γ, T ).
For example, e0(T ) = i(T ) − 1. Some useful relations expressed by inequalities are
given in the following lemma.

Lemma 4.21. Let us consider trees T for which every non-end node has at least two
children, µ(N) ≥ 2 for all N ∈ T . Let for any i the number m(i) be the minimum
number of the end nodes ν(T ) for all trees T with given incidence number i. Then

m(i) ≥ i + 1. (4.25)

Similarly for any given r let m(r) be the minimum number of end nodes with given
rank r. Then

m(r) ≥ r + 1. (4.26)

Let e0(T ) be the number of edges of a tree T which do not end at end nodes. For
any given e, let m(e) be the minimum number of end nodes with e0(T ) = e. Then

m(e0) > e0 + 1. (4.27)

Proof. For i = 1, (4.25) is true. Let the statement be true for i = i0. Let T be
a tree with the minimum number of end nodes m(i0) = m . We delete one of the
end nodes together with the edge leading to it from its parent obtaining a tree with
m(i0)− 1 end node. If the tree remains in the same class, then m(i0) is reduced by
one contradicting the minimality. Hence, the deletion of the edge created a node
with only one child. Such a node can be replaced by an edge leading from its
parent to its child and reducing the incidence number by one. Using the induction
assumption we get

m(i0) − 1 ≥ m(i0 − 1) ≥ (i0 − 1) + 1 (4.28)

that completes the induction and proves (4.25) for all i. Similar induction proves
(4.26). For r = 1, (4.26) is true. Let T be a tree with the minimum number of end
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nodes m(r0) = m. As above, by deleting an end node and using the minimality we
reduce the tree T to a tree T ′ with a smaller rank. Since only one non-end node is
eliminated, the rank of T ′ is r0 − 1 and we get (4.26). Inequality (4.27) holds for
e = 0 since m(0) ≥ 2. Let T be a tree with the minimum number of end nodes
m(e0) = m. We again delete one of the end nodes together with the edge joining
it to its parent and obtain a tree with m(e0) − 1 end nodes and the same number
of edges which do not end at an end node. The minimality implies that the parent
node has only one another child and removing it we get either e0 or e0 − 1 edges
which do not go to end nodes. We use the induction as in (4.28) obtaining (4.27).

Monomial Expansion in the Implicit Function Theorem. If operators
Gm(x1 · · ·xm) are determined by the recurrent formulas (4.18) it is obvious that
every Gm can be represented in terms of F = {F (s)} using the recurrence and
multilinearity of F (s). More precisely the following representation holds

G(m)(F ,x1 · · ·xm) =
∑

T∈Tm

cT M(F , T )(x1 · · ·xm), (4.29)

where (i) M(F , T ) ∈ T2 is a composition monomial corresponding to a tree T and
Tm ⊂ T2 stands for the set of trees with m end nodes; (ii) the integer-valued
multiplicity coefficient cT ≥ 0 counts the multiplicity of the related monomial
M(F , T ) in the expansion of (4.18); for some trees T its multiplicity coefficient cT

may be zero. The expansion (4.29) is obtained by an inductive process with respect
to m since (4.18) expresses Gm in terms of G(ij) with 2 ≤ ij < m. Notice that
for a given operator F = {F (s)} the monomial M(F , T ) considered as an operator
can be the same for different T , the monomials and the multiplicity coefficients are
determined purely algebraically.

Remark 4.22. The expression (4.29) for G(m) as a linear combination of com-
position monomials M(F , T ), in particular the multiplicity coefficients cT , does
not depend on a specific form of the operator F . It is the same for a solution
z = x + G(F ,x) of the general functional equation (4.1) and for an elementary
algebraic equation u = F(u) + x with u, x ∈ C and with a scalar analytic function
F of one complex variable.

If all F (m)
i are bounded multilinear operators then a decorated monomial

M(F , T, Γ) is also a bounded multilinear operator as it follows from the following
statement.

Lemma 4.23. Let M({F}, T, Γ) be a decorated monomial of the homogeneity index
ν(T ) = m and all F (s)

i be bounded operators from Es into E for a Banach space E.
Then the following estimate holds

‖M({F}, T, Γ)(x1 · · ·xm)‖E ≤
∏

N∈T,r(N)>0

∥∥F (µ(N))
Γ(N)

∥∥ m∏
j=1

‖xj‖E . (4.30)
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Proof. Notice that

‖F (m)(M1 · · ·Mm)‖E ≤ ‖F (m)‖‖M1‖E · · · ‖Mm‖E (4.31)

where Mj are submonomials. Applying the above inequality repeatedly we obtain
(4.30).

The next statement provides a bound for the norm of a decorated monomial
which involves as a factor the norm of a submonomial.

Lemma 4.24. Let M({F}, T, Γ) be a decorated monomial evaluated at x1 · · ·xm.
Let all F (s) be bounded operators from Es into Banach space E. Then for every
evaluated submonomial M({F}, T ′(N0), Γ) we have an estimate

‖M({F}, T, Γ)(x1 · · ·xm)‖E

≤ ‖M({F}, T ′(N0), Γ)(xκ , . . . ,xκ+ν(T ′(N))−1)‖E

×
∏

N∈T\T ′(N0),r(N)>0

‖F (µ(N))
Γ(N) ‖

∏
j<κ

‖xj‖
∏

j≥κ+ν(T ′(N0))

‖xj‖, (4.32)

where xκ , . . . ,xκ +ν(T ′(N))−1 are the arguments of the submonomial
M({F}, T ′(N0), Γ).

Proof. The proof uses the induction with respect to the length l(N0). For l(N0) = 0
the statement is obvious. Assuming that the statement is true for l(N) < l0, we
consider the case when l(N0) = l0. Notice that

‖F (µ(N∗))
Γ(N∗)

(M1 · · ·Mµ(N))‖E ≤ ‖F (µ(N∗))
Γ(N∗)

‖‖M1‖E · · · ‖Mµ(N)‖E ,

where Mj = M({F}, T ′(N∗j), Γ), N∗j are child nodes of N∗. One of the submono-
mials M1 · · ·Mµ(N) contains M({F}, T ′(N0), Γ) as a submonomial, and let it be
M({F}, T ′(N∗j0), Γ). The length of the path from N0 to N∗j is less than l0 and we
can use the induction hypothesis to estimate the norm of M({F}, T ′(N∗j0), Γ). The
norms of Mj with j 	= j0 are estimated using (4.30). The labels of the arguments
of the submonomial fill an interval according to Proposition 4.14.

The following theorem gives a needed refinement of the Implicit Function
Theorem 4.7.

Theorem 4.25 (Refined Implicit Function Theorem). Let F ∈ A(CF , RF).
Let G ∈ A(CG , RG) be the analytic solution operator constructed in Theorem 4.7
which solves (4.1). Then the expansion of G(F ,x) into composition monomials

G(F ,x) =
∞∑

m=1

∑
T∈Tm

cT M(F , T )(xm) (4.33)
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converges for ‖x‖ < RG , and the following estimates hold∑
T∈Tm

cT ‖M(F , T )(xm)‖ ≤ CGR−m
G ‖x‖m, m = 2, . . . , (4.34)

∞∑
m=2

∑
T∈Tm

cT ‖M(F , T )(xm)‖ ≤ CG
‖x‖2

XR−2
G

1 − ‖x‖XR−1
G

,

where CG and RG depend only on CF and RF and satisfy

CG =
R2

F
2(CF + RF )

, RG =
R2

F
4(CF + RF )

.

The multiplicity coefficients cT ≥ 0 satisfy the inequality∑
T∈Tm

cT ≤ 1
4
8m. (4.35)

The proof of this statement is given in Appendix B.

4.3. Decorated expansions

In this section we develop a formalism for treating linear operators with sev-
eral invariant subspaces which span the entire space as, for example, in the case
of projections (2.19). The decomposition into related invariant subspaces is very
important for the analysis. The general setting is as follows. Suppose that a Banach
space E has several projection operators Πλ, λ ∈ Λ, where Λ is a finite set of indices,
we call this set decoration set. We assume that the sum of the projections equals
the identical operator, i.e.∑

λ∈Λ

Πλ = Id, where Id is the identity operator, (4.36)

and

ΠλΠλ = Πλ, Πλ′Πλ = 0 if λ′ 	= λ, λ′, λ ∈ Λ. (4.37)

We call such projections decoration projections. For example, let us look at
projections Πn,ζ(k), n = 1, . . . , J , ζ = ± defined by (2.19). These projections define
bounded operators Πn,ζ acting on (i) functions of k in the space L1; (ii) functions
of k, τ in the space E = C([0, τ∗], L1). In another example based on (2.19) we fix
n0 and define

Πζ(k) = Πn0,ζ(k), ζ = ±, Π∞(k) =
∑

n�=n0,ζ=±
Πn,ζ(k). (4.38)

Using (4.36) we expand vectors x ∈ E as follows

x =
∑
λ∈Λ

Πλx =
∑
λ∈Λ

xλ, xλ = Πλ(x). (4.39)

We also use notation

F (n)
λ = ΠλF (n). (4.40)
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Often in applications the number of elements in Λ is either 2 or 3. In the case
when Λ has three elements we set

Λ = {+,−,∞}, Π+ + Π− + Π∞ = Id, (4.41)

and

x = x+ + x− + x∞, F(x) = F+(x) + F−(x) + F∞(x). (4.42)

Using the decomposition (4.36) we introduce for m-linear operators F (n)(x1 · · ·xn)
the corresponding decorated operators F (n)

λ,
ζ
as follows:

F (n)

λ,
ζ
(x1 · · ·xn) = ΠλF (n)(Πζ′x1 · · ·Πζ(n)xn) = F (n)

λ (Πζ′x1 · · ·Πζ(n)xn), (4.43)

where �ζ is defined in (3.7). Obviously, we have

F (n)(x1 · · ·xn) =
∑

λ∈Λ, 
ζ∈Λn

F (n)

λ,
ζ
(x1 · · ·xn). (4.44)

An example of expansion (4.44) is given by (3.11).

4.4. Decorated composition monomials

We assume that operators F (n) act in the space allowing a decomposition into
three components as in (4.41). Let M(F , T ) be a composition monomial of the
homogeneity index m, and assume that the corresponding tree T has the incidence
number i, the rank r, and e edges. Suppose also that every operator F (n) is expanded
into a sum of decorated operators as in (4.44) and (4.43). Using the linearity of
M(F , T ) with respect to operators F (n) we get

M(F , T ) = F (n)(F (m1)(· · ·) · · · F (mn)(· · ·))

=
∑

λ∈Λ, 
λ∈Λi−1, 
ζj , j=1,...,e

F (n)
λ

(
F (m1)

λj1 ,
ζj1
(· · ·) · · · F (mn)

λjn ,
ζjn

(· · ·)
)

, (4.45)

where submonomials F (m1)

λ1,
ζ1
(· · ·), . . . ,F (mn)

λn,
ζn
(· · ·) have ranks not exceeding r − 1.

We expanded repeatedly the expression in the left-hand side of (4.45) as long as
submonomials of non-zero rank were present resulting in an expansion involving
only decorated operators F (n)

λ,
ζ
.

Remark 4.26. Note that

F (n)
λ

(
F (m1)

λ1,
ζ1
(· · ·) · · · F (mn)

λn,
ζn
(· · ·)

)
= F (n)

λ

(
Πλ1F

(m1)

λ1,
ζ1
(· · ·) · · ·ΠλnF

(mn)

λn,
ζn
(· · ·)

)
.

(4.46)
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Since projections Πζ satisfy the identities (4.37) if a vector �ζ = (ζ′, . . . , ζ(n)) and
indices λ1, . . . , λn are given, then we have the identity

F (n)

λ,
ζ

(
F (m1)

λ1,
ζ1
· · · F (mn)

λn,
ζn

)
= 0 when λi 	= ζ(i) for some i. (4.47)

Hence, for non-zero terms in the expansion (4.45) if indices λ1, . . . , λn for
F (m1)

λ1,
ζ1
, . . . ,F (mn)

λn,
ζn
are given the vector �ζ in F (n)

λ,
ζ
is determined by them

ζ(i) = λi, i = 1, . . . , n. (4.48)

Note that according to (4.47) and (4.48) we have

F (n)

λ,
λ

(
F (m1)(· · ·) · · · F (mn)(· · ·)

)
= F (n)

λ

(
F (m1)

λ1
(· · ·) · · · F (mn)

λn
(· · ·)

)
. (4.49)

According to (4.45) and (4.49) for every tree T of the homogeneity index m and
the incidence number i, we get an expansion into a sum of monomials of the form

M(F , T, �λ, �ζ)(x1x2 · · ·xm) = M({F}, Γ, T )(x1x2 · · ·xm),

{F} = {F (n)

λ,
ζ
: λ ∈ Λ, �ζ ∈ Λn, n = 2, 3, . . .}. (4.50)

Namely, if a monomial M(F , T ) has at a node N operator F (m(N)) then
M({F}, Γ, T ) at this node has operator F (m(N))

Γ(N) . We call a composition monomial
of the form (4.50), where (4.48) is assumed, a decorated composition monomial.
Using the standard labeling of nodes, for a given function Γ on the tree T with
values in Λ we find the vectors �λ ∈ Λi, �ζ ∈ Λm, with i being the incidence number
of the tree T , and using (4.48) we rewrite (4.45) in the form

M(F , T )(x1x2 · · ·xm) =
∑


λ∈Λi, 
ζ∈Λm

M(F , T, �λ, �ζ)(x1x2 · · ·xm), (4.51)

where �ζ is determined by values of Γ on the end nodes. The sum (4.51) contains
at most 3i+m non-zero terms, where 3 is the number of elements in Λ. Combining
(4.51) with (4.33) we obtain

G(m)(xm) =
∑

T∈Tm

∑

λ∈Λi(T ), 
ζ∈Λm

cT M(F , T, �λ, �ζ)(xm). (4.52)

5. Expansions of Solutions for Oscillatory Integral Equation

In this section we apply general concepts introduced in previous sections to oscil-
latory integrals involving operators F as in (3.3) and (3.4). Based on projections
Πn,ζ(k) in (2.19) for given n = n0 we define as in (4.38) decoration projections in
L1 which satisfy (4.41):

Πζũ(k) = Πn0,ζ(k)ũ(k), ζ = ±, Π∞ =
∑

n�=n0

∑
ζ=±

Πn,ζ . (5.1)
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5.1. Boundedness of oscillatory integral operators

In this subsection we estimate norms of multilinear operators F = F (m) defined by
(3.4) and the related composition monomials. The operators F (m) have the form
(3.4) where Dm = Rd(m−1) as in (2.65) or Dm = [−π, π]d(m−1) as in (2.23). The
both cases are completely similar since we use the same properties of the spaces
L1 = L1([−π, π]d) or L1 = L1(Rd), and we do not use in our proofs the boundedness
and compactness of the domain [−π, π]d. Hence, we will consider everywhere the
periodic case [−π, π]d which corresponds to lattice equations and without further
comment apply the results to the case Rd.

Lemma 5.1. The operator F (m) defined by (3.4) and (2.22) is bounded from E =
C([0, τ∗], L1) into C1([0, τ∗], L1) and its norm is estimated as follows

‖F (m)(ũ1 · · · ũm)‖E ≤ τ∗C2m+1
Ξ ‖χ(m)‖

m∏
j=1

‖ũj‖E, (5.2)

‖∂τF (m)(ũ1 · · · ũm)‖E ≤ C2m+1
Ξ ‖χ(m)‖

∏
j

‖ũj‖E . (5.3)

Proof. According to Condition 2.5 we can diagonalize the matrix exp{−iL(k) τ1
� }

and its norm is bounded uniformly in k, τ1 and �:∥∥∥∥exp
{
−iL(k)

τ1

�

}∥∥∥∥ ≤ C2
Ξ ∀k ∈ Rd, � > 0, τ1 ≥ 0. (5.4)

By (3.4), (3.5) and (2.22),

‖F (m)(ũ1 · · · ũm)(·, τ)‖L1

≤ C2m+1
Ξ sup

k,
k

|χ(m)(k, �k)|

×
∫∫ τ

0

∫
Dm

|ũ1(k′)| · · · |ũm(k(m)(k, �k))| dk′ · · ·dk(m−1)dτ1dk

≤ C2m+1
Ξ ‖χ(m)‖

∫ τ

0

‖ũ1(τ1)‖L1 · · · ‖ũm(τ1)‖L1dτ1

≤ τ∗C2m+1
Ξ ‖χ(m)‖‖ũ1‖E · · · ‖ũm‖E .

Similarly,

‖∂τF (m)(ũ1 · · · ũm)(·, τ)‖L1

≤ C2m+1
Ξ ‖χ(m)‖

∫ ∫
Dm

|ũ1(k′)| · · · |ũm(k(m)(k, �k))| dk′ · · · dk(m−1)dk

≤ ‖χ(m)‖‖ũ1‖E · · · ‖ũm‖E .
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Corollary 5.2. If M(F , T, �λ, �ζ)(x1 · · ·xm) is a decorated composition monomial
defined by (4.18) and F is defined by (3.3) and (3.4) then

‖M(F , T, �λ, �ζ)(x1 · · ·xm)‖E ≤ C2e+i
Ξ τ i

∗
∏

N∈T

‖χ(µ(N))‖
m∏

l=1

‖xl‖E , (5.5)

‖∂τM(F , T, �λ, �ζ)(x1 · · ·xm)‖E ≤ C2e+i
Ξ τ i−1

∗
∏

N∈T

‖χ(µ(N))‖
m∏

l=1

‖xl‖E, (5.6)

where i is the incidence number of the tree T, and e is the number of edges of T .

Proof. We estimate the norm of the monomial M = F (m)(M1 · · ·Mm) and its time
derivative applying Lemma 5.1. Then we use (5.2) to estimate ‖Mj‖C([0,τ∗],L1). The
formal proof is straightforward and uses the induction with respect to the incidence
number of a monomial.

Using boundedness of operators F (m) we obtain in a standard way uniqueness
of solution of (3.3).

Lemma 5.3. If ũ1, ũ2 ∈ C([0, τ0], L1) with τ0 > 0 are two solutions of (3.3) with
the same h̃, then ũ1 = ũ2.

Proof. Applying Lemma 4.6, we conclude that

‖F(ũ1) −F(ũ2)‖C([0,τ1],L1) ≤ Cτ1‖F(ũ1) −F(ũ2)‖C([0,τ1],L1), 0 < τ1 ≤ τ0.

Deriving the above inequality we use that since NF < ∞ the radius RF in
Lemma 4.6 is arbitrary large and CF in (4.13) according to (5.2) is proportional
to τ1. When the Lipschitz constant Cτ1 < 1, in a standard way we obtain that
ũ1(τ) = ũ2(τ) for 0 ≤ τ ≤ τ1. Since this statement can be applied to ũ1(τ − τ1)
and ũ2(τ − τ1) we obtain that solutions coincide for 0 ≤ τ ≤ τ0.

5.2. Function-analytic expansion of solutions for modal integral

evolution equation

The reduced evolution equation (3.3) has the form

ũ = F(ũ) + x̃, (5.7)

where ũ, x̃ are functions of (k, τ). The nonlinear operator F in the right-hand side
of (5.7) is determined by (3.4), x̃(k, τ) = h̃(k) as in (3.3). We look for the solution
operator G in the form of operator series

ũ = G(x̃) =
∞∑

m=1

G(m)(x̃(m)). (5.8)

The questions related to the existence and the convergence of such series are
addressed in Theorem 4.7. As a direct corollary of Theorem 4.7 and Lemma 5.3
if applied to the reduced evolution equation (3.3) we obtain the following theorem.
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Theorem 5.4. Let

‖x̃‖E < RG = (τ∗CχC2mF +1
Ξ )−1/(mF −1)/8, τ∗ ≤ C−3

Ξ C−1
χ (5.9)

with Cχ as in (2.26), CΞ as in (2.17). Then the series (5.8) converges in E =
C([0, τ∗], L1). The solution operator G(x̃) = ũ determines the solution to (5.7) and
the operators G(m) in series (5.8) satisfy the recursive relations (4.18).

Proof. From (2.26) and (5.2), we infer that F defined by (2.21) belongs to the
class A(CF , RF ) if

τ∗CχC2m+1
Ξ ≤ CFR−m

F , m = 2, . . . , mF .

If C−2
Ξ R−1

F ≤ 1 it is sufficient to verify the above condition at m = mF only. After
this we apply Theorem 4.7 where according to (4.19) we can take

CG =
R2

F
2(CF + RF)

, RG =
R2

F
4(CF + RF)

. (5.10)

We take

CF = RF = (τ∗CχC2mF +1
Ξ )−1/(mF −1), CG = 2RG = RF/4 (5.11)

and apply Theorem 4.7. Note that C−2
Ξ R−1

F ≤ 1 if τ∗ ≤ C−3
Ξ C−1

χ .

From Theorem 5.4 (observing that by (5.11) RF → ∞ when τ∗ → 0) we obtain
Theorems 2.8 and 2.18.

To prove Theorem 2.15 on the superposition principle we apply the solution
operator G to a sum of wavepackets h̃l(k, β) as in Definition 2.9. For technical
reasons we have to modify the wavepackets using cut-off functions described below.

Cutoff Functions. We often use an infinitely smooth cutoff function Ψ(η), η ∈
Rd, satisfying the following relations

0 ≤ Ψ(η) ≤ 1, Ψ(−η) = Ψ(η), (5.12)

Ψ(η) = 1 for |η| ≤ π0/2, Ψ(η) = 0 for |η| ≥ π0,

where π0 ≤ 1 is a sufficiently small number which satisfies the inequality

0 < π0 <
1
2

min
l

dist{k∗l, σ}. (5.13)

Using Ψ we introduce cutoff functions Ψl,ζ(k, β) with support near ζk∗l defined as
follows:

Ψl,ζ(k, β) = Ψ
(

k − ζk∗l

β1−ε

)
, l = 1, . . . , Nh. (5.14)

Here ε is a small number, 1/2 > ε > 0; we take the same ε as in Definition 2.9.
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Given a wavepacket h̃l(k, β) we introduce a modified wavepacket

h̃Ψ
l (k, β) = h̃Ψ

l,+(k, β) + h̃Ψ
l,−(k, β), h̃Ψ

l,ζ (k, β) = Ψl,ζ(k, β)h̃l,ζ (k, β), (5.15)

where Ψl,ζ are defined by (5.14).

Proposition 5.5. If h̃l (k, β) is a wavepacket in the sense of Definition 2.9
then h̃Ψ

l (k, β) defined by (5.15) and (5.14) is also a wavepacket in the sense of
Definition 2.9 and, in addition to that,

h̃Ψ
l,ζ(k, β) = 0 if |k − ζk∗l| ≥ π0β

1−ε, (5.16)

‖h̃l − h̃Ψ
l ‖L1 ≤ Cβ. (5.17)

Proof. To obtain (5.17) we note that (2.34) and (5.12) imply:

‖(1 − Ψl,ζ)h̃l,ζ‖L1 =
∫

|(1 − Ψl,ζ(k, β))h̃l,ζ(k)| dk ≤ Cβ, (5.18)

and (5.17) follows. Remaining statements are obtained by a straightforward
verification.

The following lemma shows that we can replace h̃l by h̃Ψ
l in the statement of

Theorem 2.15, in particular in (2.47) and (2.48).

Lemma 5.6. Let h̃l,ζ satisfy (2.34) and h̃Ψ
l (k, β) be defined by (5.15). Let

‖h̃l‖ ≤ R, l = 1, . . . , Nh where NhR < RG . (5.19)

Then the difference[
G
(

Nh∑
l=1

h̃l

)
−

Nh∑
l=1

G(h̃l)

]
−
[
G
(

Nh∑
l=1

h̃Ψ
l

)
−

Nh∑
l=1

G(h̃Ψ
l )

]
= BΨ, (5.20)

is small, namely

‖BΨ‖E ≤ C(R)β. (5.21)

Proof. Note that since 0 ≤ Ψl ≤ 1 we have

‖Ψl,ζh̃l,ζ‖L1 ≤ ‖h̃l,ζ‖L1 , ‖(1 − Ψl,ζ)h̃l,ζ‖L1 ≤ ‖h̃l,ζ‖L1, (5.22)

and (5.18). Using the Lipschitz continuity of the solution operator G (see (4.6)) and
(5.17) we obtain (5.21).
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Truncation. We will truncate the infinite series (5.8). To this end we define an
integer m = m(βq) as a solution of the inequality

2|lnβq|
|lnRG |

< m(βq) ≤ 2|ln βq|
|ln RG |

+ 1, (5.23)

where RG is the same as in (5.9). We consider then the following partial sum of the
expansion (5.8)

Gm(βq)(h̃) =
m(βq)∑
m=1

G(m)(h̃(m)) (5.24)

and readily conclude that the following statement holds.

Lemma 5.7. Let G be defined by (5.8), then

‖G(h̃) − Gm(β)(h̃)‖E ≤ C(R)β when ‖h̃‖E ≤ R < RG . (5.25)

5.2.1. SI-CI splitting for evaluated monomials

We consider a function h̃ which is a sum of the form (2.39) and the solution G(F , h̃).
Expanding G(m)(h̃(m)) into composition monomials as in (4.33) we obtain a sum
of composition monomials M(F , T )(h̃m). Then we look at the m-linear monomial
M(F , T )(h̃m) where h̃ equals a sum of Nh one-band wavepacket h̃l as in (2.39).
Using the linearity with respect to each argument we expand the monomial into a
sum of Nm

h expressions (evaluated monomials)

M(F , T )

(
Nh∑
l=1

h̃l

)m

=
∑

l1,...,lm

M(F , T )(h̃l1 . . . h̃lm) =
∑

l1,...,lm

M(F , T )

(∏
i

h̃li

)
.

(5.26)

The sum contains evaluated monomials of two kinds: (i) ones which involve the
same wavepacket; and (ii) one corresponding to the cross terms (terms involving
different wavepackets). To be precise, we introduce the following definition.

Definition 5.8 (SI and CI). We say that an evaluated monomial
M(F , T )(h̃l1 · · · h̃lm) with the argument multiindex l1, . . . , lm ∈ {1, . . . , N}m in
the expansion (5.26) is self-interacting (SI) if

l1 = l2 = · · · = lm. (5.27)

Otherwise we say that M(F , T )(h̃l1 · · · h̃lm) is cross-interacting (CI).

Using this notation we rewrite (5.26):

M(F , T )

((
Nh∑
l=1

h̃l

)m)
=

Nh∑
l=1

M(F , T )((h̃l)m)

+
∑

l1,...,lm is CI

M(F , T )(h̃l1 · · · h̃lm). (5.28)
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Substituting this expression into (4.33) we obtain the expansion

G(h̃1 + · · · + h̃Nh
) =

∞∑
m=1

Gm((h̃1 + · · · + h̃Nh
)m)

=
∞∑

m=1

G((h̃1)m) + · · · +
∞∑

m=1

G((h̃Nh
)m) + GCI(h̃1, . . . , h̃Nh

),

(5.29)

where GCI contains only CI monomials with cross terms.

Proposition 5.9. Every evaluated CI monomial M(F , T )(h̃1, . . . , h̃Nh
) has a sub-

monomial of the form

F (s)(M(F , T1)(h̃l1 · · · h̃l1) · · ·M(F , Ts)(h̃ls · · · h̃ls)) (5.30)

where all M(F , T1)(h̃l1 · · · h̃l1), . . . , M(F , Ts)(h̃ls · · · h̃ls) are SI, and there are at
least two indices i and j such that h̃li 	= h̃lj . We call such a monomial a minimal
CI monomial.

Proof. The set of CI submonomials of M(F , T ) is finite and it is non-empty since
M(F , T ) itself is a CI monomial. We take CI submonomial of M(F , T ) with a
minimal rank. Its rank is non-zero since every zero rank submonomial is SI. Since
the rank is minimal all submonomials are SI. Hence it has the form (5.30).

5.3. Properties of SI monomials

According to Definition 5.8 for a SI evaluated monomial we have h̃l1 = · · · = h̃lm .
Observe also that in view of Definition 2.9 every single-band wavepacket h̃l has its
band number, and n′ = n′′ = · · · = n(m), that is the band nl = n0 is the same for
all h̃l. Similarly, k∗l1 = · · · = k∗lm . Having these properties we often omit in this
section indices ni, li and skip �n for notational brevity, writing, for example,

ωn,ζ(k) = ωζ(k), ũn,ζ(k) = ũζ(k), χ
(m)

n,ζ,
n,
ζ
= χ

(m)

ζ,
ζ
.

5.3.1. Monomials applied to a single-band wavepacket

Here we consider monomials based on oscillatory integral operators and which are
applied to a single-band wavepacket. We recall that according to (2.33) a single-
band wavepacket h̃ involves two components h̃+ and h̃− and a small complement
component h̃∞.

Definition 5.10 (Frequency Matching). We call a decorated composition
monomial M(F , T, �λ, �ζ) frequency matched (FM) if for every non-end node N ∈ T
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the corresponding decorated submonomial M ′ = F (m′)
λ (M1,ζ′ · · ·Mm′,ζ(m′)) satisfies

the following conditions:

λ 	= ∞, ζ(j) 	= ∞, j = 1, . . . , m′, (5.31)

and
m′∑
j=1

ζ(j) = λ, (5.32)

where λ, ζ(j) ∈ Λ defined by (4.41), we identify ± with ±1. A decorated composi-
tion monomial which does not satisfy the above conditions is called not frequency
matched (NFM) monomial.

Collecting separately FM and NFM terms in the expression (4.51) we obtain

M(F , T )(x1x2 · · ·xm) =
∑

FM 
λ,
ζ

M(F , T, �λ, �ζ)(x1x2 · · ·xm)

+
∑

NFM 
λ,
ζ

M(F , T, �λ, �ζ)(x1x2 · · ·xm). (5.33)

Remark 5.11. Any SI evaluated monomial is either FM or NFM. We do not define
for CI evaluated monomials if they are FM or NFM.

Below we show that FM decorated monomials have the following properties
which can be briefly stated as follows.

Property 1. If h̃(k) is a wavepacket in the sense of Definition 2.9 centered around
±k∗ then FM monomial M(F , T, �λ, �ζ)(h̃m)(k) is also localized about ±k∗. This
property is proved below in Corollary 5.13.

Property 2. The most important property concerning FM-NFM splitting is that
the result of a NFM monomial application to a wavepacket has magnitude O(�),
that is O(β2) for the scaling (2.46). Consequently, all NFM terms in (5.33) are
small (see Lemma 5.16 below) and they give contribution only to the remainder D̃
in (2.47).

Now we formulate exact statements clarifying the above properties. The follow-
ing two statements show, in particular, that an FM monomial transforms a function
supported in a vicinity of k∗ into a similar function.

Lemma 5.12 (Operator Support). If ũ1,ζ′ · · · ũm,ζ(m) are such that

ũζ(l)(k(l)) = 0 when |k(l) − ζ(l)k∗| > δl, l = 1, . . . , m,

and

k
ζ = (ζ′ + · · · + ζ(m))k∗. (5.34)
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then F (m)(ũ1,ζ′ · · · ũm,ζ(m))(k, τ) given by (3.4), satisfies

F (m)
ζ (ũ1,ζ′ · · · ũm,ζ(m))(k, τ) = 0 if |k − k
ζ | > δ1 + · · · + δm. (5.35)

In particular, if the binary indices ζ, �ζ(m) are frequency matched (FM), that is

ζ = ζ′ + · · · + ζ(m), where ζ(j), ζ = ±1, (5.36)

then (5.35) holds with k
ζ = ζk∗.

Proof. From (3.8) and (5.36) we obtain the equality

k − ζk∗ = (k′ − ζ′k∗) + · · · + (k(m) − ζ(m)k∗)

which implies lemma’s statement.

Corollary 5.13 (Support of a Monomial). If M(F , T, �λ, �ζ)(h̃1 · · · h̃m) is a
decorated composition monomial and

h̃l,ζ(l) = 0 when |k(l) − ζ(l)k∗| > δ0, l = 1, . . . , m, (5.37)

then

M(F , T, �λ, �ζ)(h̃1 · · · h̃m)(k) = 0 if |k − k
ζ | > mδ0, (5.38)

where k
ζ is defined by (5.34). In particular, if M(F , T, �λ, �ζ)(h̃1 · · · h̃m) is a FM
decorated composition monomial, then

M(F , T, �λ, �ζ)(h̃1 · · · h̃m)(k) = 0 if |k − ζk∗| > mδ0, (5.39)

where ζ satisfies (5.36). In particular, if δ0 = β1−ε and m ≤ C ln β then for any
δ1 > 0 there exists β0 such that for β < β0 we have Cπ0β

1−ε ln β < δ1 and

M(F , T, �λ, �ζ)(h̃1 · · · h̃m)(k) = 0 when |k − ζk∗| > Cπ0β
1−ε ln β. (5.40)

Proof. To obtain (5.38) we apply Lemma 5.12 and use the induction with respect
to the rank of a monomial.

Remark 5.14. If M(F , T, �λ, �ζ) is NFM and h̃(k) is a wavepacket localized
near ±k∗, then M(F , T, �λ, �ζ)(h̃m)(k) is localized near the point k
ζ . As �ζ vary
over {−1, 1}m such points k
ζ lie on a straight line parallel to k∗. For m → ∞
the closure of the set of such k
ζ with a generic k∗ can be the entire torus [−π, π]d,

whereas for the case of �ζ corresponding to an FM monomial the closure is just two
points ±k∗. Hence Property 1 is very useful and, in particular, allows to avoid small
denominators in coupling terms.

The following lemma shows that the FM interaction phase function of a single
wavepacket has a critical point at its center, or, in other words, FM monomials
satisfy the group velocity matching condition (see [3, 6]).
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Lemma 5.15. If a decorated operator F (m)

ζ,
ζ(m)
is FM then the interaction phase

function φ in (3.8) has a critical point:

∇kφn,ζ,
n,
ζ(ζk∗, �k∗) = 0 at �k∗ = (ζ′k∗, . . . , ζ(m)k∗). (5.41)

Proof. For FM decorated operator all indices ζ(j) = ± and

n = n′ = · · · = n(m) and ζ = ζ′ + · · · + ζ(m). (5.42)

Hence we obtain from (3.9) that

∇kφn,ζ,
n,
ζ(k, �k) = ζ∇kω(k) − ζ(m)∇kω(k − k′ − · · · − k(m−1)).

Since ζk∗ − ζ′k′
∗ − · · · − ζ(m−1)k(m−1)

∗ = ζ(m)k(m)
∗ and (2.16) implies

ζ∇kω(ζk∗) = ζ(m)∇kω(ζ(m)ζk∗) for ζ = ±, ζ(m) = ±, (5.43)

we obtain the desired (5.41).

Now we consider NFM monomials and prove the Property 2. First we note that
(2.40) implies

ωnl
(k∗l) ≥ ω∗ > 0, l = 1, . . . , Nh. (5.44)

If k∗l = k∗, nl = n0 satisfy Condition 2.13 then if (2.44) does not hold, (2.42) does
not hold too, hence for m ≤ mF∣∣∣∣∣

m∑
j=1

ζ(j)ωn0(k∗) − ζωn(k
ζ)

∣∣∣∣∣ ≥ ω∗ > 0, k
ζ =
m∑

j=1

ζ(j)k∗, (5.45)

where ω∗ > 0 is a positive number (we take for notation simplicity the same small
enough constant in (5.44) and (5.45)).

The following lemma, which is a version of the standard statement of the sta-
tionary phase method, shows that the action of an NFM monomial on a wavepacket
produces a wave of a small amplitude.

Lemma 5.16. Let the decoration projections be defined by (5.1). Assume that Con-
dition 2.13 holds. Let indices ζ, ζ′, . . . , ζ(m) be NFM, that is either one of them is
∞ or

ζ 	= ζ′ + · · · + ζ(m), ζ(j) = ±1, ζ = ±1. (5.46)

Let δNFM > 0 be small enough to satisfy

δNFM max
|k∗l−k|≤δNFM

|∇ωl(k)| ≤ 1
4
ω∗, l = 1, . . . , Nh, (5.47)

where ω∗ is given in (5.45). Let k,k(j) satisfy (3.12) and be such that
m∑

j=1

|k(j) − ζ(j)k∗| ≤ δNFM, |k − k
ζ | ≤ δNFM, (5.48)
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where k
ζ is defined by (5.34) and k∗ = k∗l satisfy the conditions (5.44) and (5.45).
Let the functions ũj,ζ(j)(k, τ) satisfy the condition

ũj,ζ(j)(k, τ) = 0 when ζ(j) = ∞
and

ũj,ζ(j)(ζ(j)k∗ + s, τ) = 0 when |s| ≥ δNFM. (5.49)

Then

‖F (m)

ζ,ζ′,...,ζ(m)(ũ1,ζ′ · · · ũm,ζ(m))‖E ≤ 4�

ω∗
‖χ(m)‖C2m+1

Ξ

∏
j

‖ũj‖E

+
2�τ∗
ω∗

C2m+1
Ξ ‖χ(m)‖

∑
i

‖∂τ ũi‖E

∏
j �=i

‖ũj‖E .

(5.50)

Proof. If one of the indices ζ′, . . . , ζ(m) equals ∞ by (5.49) F (m)

ζ,ζ′,...,ζ(m) = 0 and
(5.50) is satisfied. Now we consider the case when all ζ, ζ′, . . . , ζ(m) are finite. We
denote for brevity ωn0 = ω, k∗l = k∗ and φn,ζ,
n,
ζ = φ. Since (5.48) holds we get
from (3.9) that

|φ(k, �k) − φ(k, �k∗)| ≤ |ω(k′) − ω(ζ′k∗)| + · · · + |ω(k(m)) − ω(ζ(m)k∗)|

≤ max
|k∗−k|≤δNFM

|∇ω(k)|
m∑

j=1

|k(j) − ζ(j)k∗|

≤ δNFM max
|k∗−k|≤δNFM

|∇ω(k)|.

Using (5.47), we conclude that

|φ(k, �k)| ≥ |φ(k, �k∗)| −
1
4
|ω∗|. (5.51)

By (5.46), the condition (2.44) is not satisfied, therefore (5.45) holds and implies
that

|φ(k
ζ ,
�k∗)| ≥ ω∗. (5.52)

Using (5.52), (5.48) and (5.47) we conclude that

|φ(k, �k∗)| ≥ ω∗ − |ω(k) − ω(k
ζ)| ≥ ω∗ − δNFM max
|k∗−k|≤δNFM

|∇ω(k)| ≥ 3
4
ω∗. (5.53)

Together with (5.51) this inequality implies that when (5.48) holds we have the
estimate

|φ(k, �k)| ≥ 1
2
ω∗. (5.54)

Now we note that the oscillatory factor in (3.8)

exp
{

iφ(k, �k)
τ1

�

}
=

�

iφ(k, �k)
∂τ1 exp

{
iφ(k, �k)

τ1

�

}
.
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Integrating (3.8) by parts with respect to τ1 we obtain

F (m)

ζ,
ζ
(ũ1 · · · ũm)(k, τ)

=
∫

Dm

� exp
{
iφ(k, �k) τ

�

}
iφ(k, �k)

χ
(m)

ζ,
ζ
(k, �k)ũ1,ζ′(k′, τ) · · · ũm,ζ′(k(m)(k, �k), τ) d̃(m−1)d�k

−
∫

Dm

�

iφ(k, �k)
χ

(m)

ζ,
ζ
(k, �k)ũ1,ζ′(k′, 0) · · · ũm,ζ′(k(m)(k, �k), 0) d̃(m−1)d�k

−
∫ τ

0

∫
Dm

�

iφ(k, �k)
exp
{

iφ(k, �k)
τ1

�

}
×χ

(m)

ζ,
ζ(m)
(k, �k)∂τ1 [ũ1,ζ′(k′) · · · ũm,ζ′(k(m)(k, �k))] d̃(m−1)d�kdτ1. (5.55)

Estimating the denominator by (5.54) and using (3.5) we obtain (5.50). Finally, we
consider the case when ζ = ∞ and all remaining indices ζ(j) equal ±. We expand
Π∞ into sum of Πn,ζ as in (4.38). In this case χ

(m)

ζ,
ζ(m)
(k, �k) involves a projection

Πn,ζ with n 	= n0 (the oscillatory integral may involve Nh − 1 terms with such n).
For a fixed n the corresponding phase function φ(k, �k) takes the form

φ(k, �k) = φn,ζ,
n,
ζ(k, �k) = ζωn(k) − ζ′ωn0(k
′) − · · · − ζ(m)ωn0(k

(m)).

Using again (5.45) (now with n 	= n0) we obtain that (5.52) holds. This implies
(5.54) as above provided δNFM is small enough. Hence, the relation (5.55) holds,
implying readily the desired bound (5.50).

5.3.2. FM and NFM monomials for SI oscillatory integrals

The following below theorem shows that NFM monomials are of the order O(�) as
� → 0. We begin first with the following statement.

Lemma 5.17. Assume that Condition 2.13 holds. Let a monomial S =
F (s)

ζ (M1,ζ(1) · · ·Ms,ζ(s)) have all submonomials M1,ζ(1) · · ·Ms,ζ(s) which satisfy FM
condition (5.36), but S itself is not FM. Assume that S is applied to wavepackets
hl which satisfy Definition 2.9 and

h̃l,ζ(k, β) = 0 if |k − ζk∗l| ≥ π0β
1−ε, ζ = ±. (5.56)

Then

‖S‖E ≤ 4�‖χ(s)‖
|ω(k∗)|

C2s+1
Ξ

∏
j

‖Mj,ζ(j)‖E

+
4�τ∗‖χ(s)‖
|ω(k∗)|

C2s+1
Ξ

s∑
i=1

‖∂τMi,ζ(i)‖E

∏
j �=i

‖Mj,ζ(j)‖E , E = C([0, τ∗], L1).

(5.57)
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Proof. Since M1,ζ(1) · · ·Ms,ζ(s) are decorated FM submonomials we can use
Lemma 5.12 and Corollary 5.13. Applying Corollary 5.13 and using (5.12) we obtain
that

Ml,ζ(l)(k(l), τ1) = 0 when |k(l) − ζ(l)k∗| > ν(Ml,ζ(l))β1−επ0, l = 1, . . . , s,

(5.58)

where ν(M) is homogeneity index of M . Consider now the oscillatory integral (3.8)
which determines S, namely

F (s)

ζ,
ζ
(M1,ζ(1) · · ·Ms,ζ(s))(k, τ) =

∫ τ

0

∫
Ds

exp
{

iφζ,
ζ(k, �k)
τ1

�

}
×χ

(s)

ζ,
ζ
(k, �k)M1,ζ(1)(k′, τ1) · · ·Ms,ζ(s)(k(s)(k, �k), τ1)

× d̃(s−1)d�kdτ1. (5.59)

We apply Lemma 5.16 where, according to (5.58) and (5.62) δNFM = mβ1−επ0.
According to (5.50)

‖S‖E = ‖F (s)

ζ,
ζ(s)
(M1,ζ(1) · · ·Ms,ζ(s))(k, τ)‖E ≤ 4�‖χ(s)‖

|ω(k∗)|
C2s+1

Ξ

∏
j

‖Mj,ζ(j)‖E

+
4�τ∗‖χ(s)‖
|ω(k∗)|

C2s+1
Ξ

s∑
i=1

‖∂τMi,ζ(i)‖E

∏
j �=i

‖Mj,ζ(j)‖E , E = C([0, τ∗], L1),

(5.60)

that implies (5.57).

Theorem 5.18. Suppose that (i) the inequalities (5.44) hold; (ii) h̃l are wavepackets
in the sense of Definition 2.9; (iii) the relations (5.56) hold; (iv) the projections are
defined by (5.1); (v) Condition 2.13 holds. Then a NFM decorated monomial based
on oscillatory integrals F defined by (3.4) satisfies the estimate

‖M(F , T, �λ, �ζ)(h̃1 · · · h̃m)‖C([0,τ∗],L1)

≤ 4�τ i−1
∗ [1 + m]
|ω(k∗)|

C2i+e
Ξ

∏
N∈T,r(N)>0

‖χ(µ(N))‖
m∏

l=1

‖h̃l,ζ(l)‖C([0,τ∗],L1), (5.61)

where i, m and e are respectively the incidence number, the homogeneity index and
the number of edges of T .

Proof. Let M(F , T, �λ(q), �ζ(m))(h̃1 · · · h̃m) be a NFM decorated m-homogenious
monomial. We find a decorated submonomial S = M(F , T (N0), �λ(q), �ζ(m)) of
M(F , T, �λ(q), �ζ(m)) with such N0 that S is NFM and has minimal rank of all NFM
submonomials. We denote by r0 the rank of S, by i′ its incidence number and
by s = ν(S) = ν(T (N0)) its homogeneity index. This monomial has the form
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S = F (s)
ζ (M1,ζ(1) · · ·Ms,ζ(s)). Since the rank is minimal, all decorated submonomi-

als Ml,ζ(l) are FM and their ranks do not exceed r0 − 1. Then according to (4.21)
their homogeneity indices satisfy

ν(M1,ζ(1)) + · · · + ν(Ms,ζ(s)) = s ≤ m. (5.62)

Applying Lemma 5.17 we obtain (5.57). Now we use Lemmas 5.1 and 5.2. Applying
Lemma 4.24 we obtain

‖M({F}, T, Γ)(h̃1 · · · h̃m)‖E

≤ ‖S‖E

∏
N∈T\T ′(N0),r(N)>0

‖F (µ(N))
Γ(N) ‖

∏
l<κ

‖h̃l,ζ(l)‖E

∏
l≥κ+ν(T ′(N0))

‖h̃l,ζ(l)‖E .

Note that the norm of ‖F (µ(N))
Γ(N) ‖ is estimated by (5.2) and norm of S by (5.57).

In turn, we estimate right-hand side of (5.57) using (5.2) and (5.3). Taking into
account that s ≤ m in the sum in (5.60) we get the estimate (5.61).

We also consider the case when Condition 2.13 does not hold and Condi-
tion 2.23 holds. In this case we give an alternative definition of FM and NFM
decorated monomials.

Definition 5.19 (Alternative Frequency Matching). We call a decorated
composition monomial M(F , T, �λ, �ζ) alternatively frequency matched (AFM) if
(i) every node of T has an odd number of child nodes (at least three); (ii)
for every non-end node N ∈ T the corresponding decorated submonomial
M ′(F , T (N), �λ, �ζ) = F (m′)

λ (M1,ζ′ · · ·Mm′,ζ(m′)) satisfies (5.31) and

sign

(
m′∑
j=1

ζ(j)

)
= λ, (5.63)

where λ, ζ(j) ∈ Λ defined by (4.41), we identify ± with ±1. A decorated composition
monomial which is not AFM is called alternatively not frequency matched (ANFM)
monomial.

Now we prove a statement analogous to Theorem 5.18 when Condition 2.23
holds.

Theorem 5.20. Assume that assumptions of Theorem NFM hold with Condition
2.13 replaced by Condition 2.23. Then (5.61) holds.

Proof. According to Corollary 5.13, if h̃l1 = · · · = h̃lm = h̃l satisfy Definition 2.9
and (5.56), then M(F , T, �λ, �ζ)(h̃l1 · · · h̃lm) = M(F , T, �λ, �ζ)(h̃l1,ζ′ · · · h̃lm,ζ(m)) has
support in a mβ1−ε vicinity of k
ζ = νk∗ defined by (5.34), ν and m are odd integers,

m ≥ 3, ν = ζ′+ · · ·+ζ(m). Let S = M(F , T ′, �λ, �ζ) be minimal ANFM submonomial
of M(F , T, �λ, �ζ), that is if T ′′ ⊂ T ′ then M(F , T ′′, �λ, �ζ) is AFM submonomial of S.
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The monomial S has the form of (5.59) with the interaction phase function

φζ,
ζ(k, �k) = ζωn(k) − ζ′ωn0(k
′) − · · · − ζ(s)ωn0(k

(s)). (5.64)

The integrand is non-zero near k(j) = νjk∗, and applying (5.63) to every AFM
submonomial we get

ζ(l) = sign(νl). (5.65)

Using (2.96) and (2.16) we obtain

φζ,
ζ(νk∗, �k∗) = ζωn(νk∗) − ζ′ωn0(ν1k∗) − · · · − ζ(s)ωn0(νsk∗)

= ζωn(νk∗) − sign(ν1)|ν1|ωn0(k∗) − · · · − sign(νs)|νs|ωn0(k∗)

= ζ|ν|ωn(k∗) − (ν1 + · · · + νs)ωn0(k∗), ν = ν1 + · · · + νs. (5.66)

Therefore, since S is ANFM, ζ 	= sign(ν) and since ν is odd,

φζ,
ζ(νk∗, �k∗) = −2νωn0(k∗) 	= 0, (5.67)

therefore (5.52) holds. We can repeat the proofs of Lemmas 5.16 and 5.17 and
obtain (5.57). From (5.57), we obtain (5.61) as in the proof of Theorem 5.18.

Below we give estimations for the derivatives with respect to k of a composition
monomial applied to a wavepacket. Note that (2.35) admits a singular dependence
on β of wavepackets h̃ζ(β,k). This type of dependence also naturally comes from
explicit formulas as (2.36) which yield that the first derivative with respect to k
has a factor β−1. Below we estimate dependence on β of monomials applied to
wavepackets and will show that they have the same type of singularity.

Observe that by (5.13) all the points k∗l are at the distance at least 2π0 from
σ. Hence, according to Definition 2.3, and (2.28)

max
|k±k∗l|≤π0, l=1,...,Nh,

(|∇2
kω| + |∇kω|) ≤ Cω,2, (5.68)

max
|k±k∗l|≤π0, l=1,...,Nh

|∇χ
(m)

ζ,
ζ
(k,k′, . . . ,k(m))| ≤ CχCm+1

Ξ . (5.69)

The following seemingly technical lemma describes a very important property of
solutions. It shows that the k-gradient of solutions behaves, roughly speaking, as the
gradient of initial data. Corresponding estimates play a crucial role in the control
of smallness of interaction of different wavepackets.

Lemma 5.21. Let M(F , T, �λ, �ζ)(h̃l1 · · · h̃lm) be a decorated monomial which is SI.
Assume that h̃lj = h̃l are wavepackets satisfying Definition 2.9, (5.56) and (5.19),
that (2.46) holds and

β1−εm ≤ π0. (5.70)
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Assume that either Condition 2.13 holds and the monomial is FM or Condition 2.23
holds and the monomial is AFM. Then

‖∇kM(F , T, �λ, �ζ)(h̃l1 · · · h̃lm)‖E ≤ CCχτ i
∗C2i+e

Ξ Ci−1
χ Rm−1β−1−εm2, (5.71)

where E = C([0, τ∗], L1), τ∗ ≤ 1, with i = i(T ) and e = e(T ) being respectively the
incidence number and the number of edges of T .

Proof. We use the induction with respect to the incidence number i of a tree T .
First, we consider the case when Condition 2.13 holds and M(F , T, �λ, �ζ) is FM.
For i = 0, (5.71) follows from (2.35). Now we assume that (5.71) holds for the
incidence number less than i and prove it when the incidence number equals i. Since
arguments of M(F , T, �λ, �ζ) are SI, according Definition 5.8, l1 = · · · = lm = l. It is
sufficient to prove the boundedness of

‖∇kM(F , T, �λ, �ζ)(h̃m
l )‖E = ‖∇kF (s)

λ (M1,ζ′ · · ·Ms,ζ(s))‖E ,

where M1 · · ·Ms are decorated submonomials, Mj,ζ = ΠζMj. Let the submono-
mials have incidence numbers i1, . . . , is and homogeneities m1, . . . , ms respectively
satisfying

i1 + · · · + is = i − 1, m1 + · · · + ms = m. (5.72)

We have by (3.8)

∇kF (s)
λ (M1,ζ′ · · ·Ms,ζ(s))(k, τ)

= ∇k

∫ τ

0

∫
[−π,π](s−1)d

exp
{

iφλ,
ζ(k, �k)
τ1

�

}
×χ

(s)

λ,
ζ
(k, �k)M1,ζ′(k′) · · ·Ms,ζ(s)(k(s)(k, �k)) d̃(s−1)d�kdτ1. (5.73)

By Leibnitz formula,

∇kF (s)
λ (M1,ζ′ · · ·Ms,ζ(s))(k, τ) = I1 + I2 + I3, (5.74)

where

I1 =
∫ τ

0

∫
[−π,π](s−1)d

[
∇k exp

{
iφλ,
ζ(k, �k)

τ1

�

}]
×χ

(s)

λ,
ζ
(k, �k)M1,ζ′(k′) · · ·Ms,ζ(s)(k(s)(k, �k)) d̃(s−1)d�kdτ1,

I2 =
∫ τ

0

∫
[−π,π](s−1)d

exp
{

iφλ,
ζ(k, �k)
τ1

�

}
× [∇kχ

(s)

λ,
ζ
(k, �k)]M1,ζ′(k′) · · ·Ms,ζ(s)(k(s)(k, �k)) d̃(s−1)d�kdτ1,

I3 =
∫ τ

0

∫
[−π,π](s−1)d

exp
{

iφλ,
ζ(k, �k)
τ1

�

}
×χ

(s)

λ,
ζ
(k, �k)M1,ζ′(k′) · · · ∇kMs,ζ(s)(k(s)(k, �k)) d̃(s−1)d�kdτ1.
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By (5.5),

‖Mj,ζ(j)(k(j))‖L1 ≤ Cτ i(j)C2i(j)+e(j)

Ξ Ci(j)

χ Rmj , j = 1, . . . , s. (5.75)

Using (3.5), (5.75), (5.72) and the induction assumption we get

|I3| ≤ ‖χ(s)‖
s−1∏
j=1

‖Mj,ζ(j)(k(j))‖E

∫ τ

0

‖∇kMs,ζ(s)‖Edτ1

≤ CCm
1 Rm−1τ iC2i+e

Ξ Ci
χβ−1−ε. (5.76)

From (5.75) and the smoothness of χ(s)(k, �k) we get

|I2| ≤ Cβ−1−ετ iCm
1 C2i+e

Ξ Ci
χRm. (5.77)

Now we estimate I1. Using (3.9) we obtain

I1 =
∫ τ

0

∫
[−π,π](s−1)d

[
exp
{

iφλ,
ζ(k, �k)
τ1

�

}]
× τ1

�
[−λ∇kω(k) + ζ(s)∇kω(k(s)(k, �k))]

×χ
(s)

λ,
ζ
(k, �k)M1,ζ′(k′) · · ·Ms,ζ(s)(k(s)(k, �k)) d̃(s−1)d�kdτ1. (5.78)

The difficulty in the estimation of the integral I1 comes from the factor τ1
� since � is

small. Note that according to (2.46) β2/� ≤ C. Since M(F , T, �λ, �ζ) is FM, its every
submonomial is FM too and we can apply to them Corollary 5.13, which yields

Mj,ζ(j)(k(j)) = 0 for |k(j) − ζ(j)k∗| > mjπ0β
1−ε, j = 1, . . . , s.

Hence, it is sufficient to estimate I1 for

|k(j) − ζ(j)k∗| ≤ δ1 = mπ0β
1−ε for all j. (5.79)

According to Lemma 5.15, since �λ, �ζ are FM

∇kφλ,
ζ(λk∗, �k∗) = [−λ∇kω(k∗) + ζ(s)∇kω((k(s)(k∗, �k∗)))] = 0. (5.80)

Using (5.68) we conclude that in a vicinity of k∗ defined by (5.79) we have

|[−λ∇kω(k) + ζ(s)∇kω(k(s)(k, �k))]| ≤ 2(s + 1)Cω,2δ1.

This yields the estimate

|I1| ≤ CC2i+e
Ξ τ iCi

χCm
1 β−1−εm2Rm. (5.81)

Combining (5.81), (5.77) and (5.76) we obtain (5.71) and the induction is completed.
Now we consider the case when Condition 2.23 holds and the monomial is AFM.
Note that according to Corollary 5.13, the submonomials Mj,ζ(j) have supports near
νjk∗, with an odd νj . By Lemma 5.12 the monomial itself is non-zero near νk∗,
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ν = ν1 + · · · + νs; since s is odd ν is odd too. Obviously, one of νj has the same
sign as ν, we assume that j = s, that is

sign(νs) = sign(ν1 + · · · + νs) = sign(ν), (5.82)

the general case can be reduced to this by a relabeling of variables. The interaction
phase function is given by (5.64) and since the submonomials are AFM (5.65) holds.
According to (2.16) ∇k(ω(−k)) = −(∇kω)(k). Therefore, using (2.95) we obtain

∇kφλ,
ζ(νk∗, �k∗) = λ∇kω(νk∗) − ζ(s)∇kω(νsk∗)

= λ(∇kω)(sign(ν)|ν|k∗) − ζ(s)∇kω(sign(νs)|νs|k∗)

= λ(∇kω)(sign(ν)k∗) − ζ(s)∇kω(sign(νs)k∗)

= (λ sign(ν) − ζ(s) sign(νs))(∇kω)(k∗).

Using (5.65) we conclude that

∇kφλ,
ζ(νk∗, �k∗) = 0, �k∗ = (ν1k∗, . . . , νsk∗). (5.83)

Using (5.83) instead of (5.80) we conclude as in the first half of the proof that (5.71)
holds in the AFM case too.

5.4. Properties of minimal CI monomials

Here we consider CI evaluated monomials with arguments involving different
wavepackets h̃l. Since the group velocities of wavepackets are different, namely
(2.41) is satisfied, there exists p0 > 0 such that

|∇ω(k∗l1 ) −∇ω(k∗l2)| ≥ p0 > 0 if l1 	= l2. (5.84)

The next lemma is a standard implication of the Stationary Phase Method in the
case when the phase function has no critical points in the domain of integration,
namely when (2.41) holds.

Lemma 5.22. Let k∗l and ωn be generic in the sense of Definition 2.24. Let
F (m) be defined by (3.4), m(β) be as in (5.23). We assume that (2.28) and
(2.41) hold. We also assume that (5.19), (5.56), (2.34), (2.35) and (2.46) hold. We
assume that M(F , T )(h̃l1 · · · h̃lm) is a monomial with homogeneity index m evalu-
ated at arguments with CI multiindex l1, . . . , lm, but every evaluated submonomial
of M(F , T )(h̃l1 · · · h̃lm) is SI. Then for m ≤ m(β) and small β

‖M(F , T )(h̃l1 · · · h̃lm)‖E ≤ C

p0
τ i−1
∗ C2i+e

Ξ 32mCi
χ

[
�|ln β|
β1+ε

+ β

]
m2Rm−1, (5.85)

where i and e are respectively the incidence number and number of edges of T, R is
as in (5.19).

Proof. Since k∗l are not band-crossing points, the relations (5.69) and (5.68) hold.
We expand M(F , T ) into a sum of decorated monomials M(F , T, �λ, �ζ) as in (4.51),
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which contains no more than 3i(T )+m terms, and i(T ) + m ≤ 2m. The submono-
mials of every decorated monomial are SI by the assumption of the theorem. If
Condition 2.13 holds, the submonomials are either FM or NFM; if Condition 2.23
holds, the submonomials are either AFM or ANFM. If a decorated submonomial
M(F , T ′, �λ′, �ζ′) is NFM we use Theorem 5.18 and obtain from (5.61) the inequality

‖M(F , T ′, �λ′, �ζ′)(h̃lj′+1
· · · h̃lj′+m′ )‖E ≤ C�τ i′−1

∗ [1 + m]C2i′+e′
Ξ Ci′

χ Rm′
, (5.86)

where i′ and e′ are the incidence number and number of edges of the subtree T ′.
Alternatively, if Condition 2.23 holds, and a decorated monomial M(F , T ′, �λ′, �ζ′) is
ANFM, we use Theorem 5.20 and obtain from (5.61) the inequality (5.86). Using
(5.86) in both cases we obtain

‖M(F , T, �λ, �ζ)(h̃l1 · · · h̃lm)‖E ≤ C�τ i−1
∗ C2i+e

Ξ Ci
χmRm. (5.87)

Now we consider the case when Condition 2.13 holds and every submonomial of
M(F , T, �λ, �ζ) is FM. We write the integral with respect to τ1 in (5.59) as a sum of
two integrals from 0 to β and from β to τ , namely

F (s)

ζ,
ζ
(M1 · · ·Ms)(k, τ) = F1 + F2,

F1 =
∫ τ

β

∫
Dm

exp
{

iφζ,
ζ(k, �k)
τ1

�

}
A

(s)

ζ,
ζ
(k, �k) d̃(s−1)d�kdτ1, F2

=
∫ β

0

· · · dτ1 (5.88)

where

A
(s)

ζ,
ζ(m)
(k, �k) = χ

(s)

ζ,
ζ
(k, �k)M1(k′) · · ·Ms(k(s)), (5.89)

Mj are submonomials of M . According to Corollary 5.2 with τ∗ = β

‖F2‖L1 ≤ 2C1+2s
Ξ Cχβ

s∏
j=1

‖Mj‖E

≤ βCe+2i
Ξ τ i−1

∗ Cχ

m∏
j=1

‖h̃lj‖E

≤ βCχCe+2i
Ξ τ i−1

∗E Rm. (5.90)

Now we estimate F1. Since M(F , T ) is CI, there are two SI submonomials Mj1 and
Mj2 applied to (h̃lj1

)m1 and (h̃lj2
)m2 with lj1 	= lj2 . Let us assume that lj1 = l1,

lj2 = ls (the general case can be easily reduced to it by a relabeling of variables).
We denote

φ′ = ∇k′φζ,
ζ(k, �k∗) = ∇k′ω(k∗l1) −∇k(s)ω(k∗ls) 	= 0, p = φ′/|φ′|. (5.91)

By (5.84) and (5.43) we obtain

|p·∇k′φζ,
ζ(k, �k∗)| ≥ p0 > 0 for �k = �k∗ = (k∗l1 , . . . ,k∗ls). (5.92)
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Note that

exp
{

iφζ,
ζ(k, �k)
τ1

�

}
=

�

ip·∇k′φζ,
ζ(k, �k)τ1

p·∇k′ exp
{

iφζ,
ζ(k, �k)
τ1

�

}
.

Using this identity, (2.25) and integrating by parts the integral which defines F1 in
(5.88) we obtain

F1 =
∫ τ

β

I(k, τ1) dτ1, I(k, τ1) =
∫

Dm

exp
{

iφζ,
ζ(k, �k)
τ1

�

}
A

(s)

ζ,
ζ
(k, �k) d̃(s−1)d�k

= −
∫

Ds

� exp
{

iφζ,
ζ(k, �k)
τ1

�

}
iτ1

p·∇k′
A

(s)

ζ,
ζ
(k, �k)

∇k′φζ,
ζ(k, �k) · p
d̃(s−1)d�k. (5.93)

From (5.56), Lemma 5.12 and Corollary 5.13 we see that in the integral I(k, τ1) the
integrands are non-zero only if

|k(j) − ζ(j)k(j)
∗ | ≤ mjπ0β

1−ε, |k − ζk∗| ≤ mπ0β
1−ε, m1 + · · · + ms ≤ m,

(5.94)

where π0 ≤ 1. Using the Taylor remainder estimate for φζ,
ζ at �k∗ we obtain the
inequality

|∇k′φζ,
ζ(k, �k) − φ′| ≤ 3mβ1−εCω,2 if (5.94) holds. (5.95)

Suppose that β is small and satisfies

3mβ1−εCω,2 ≤ p0

2
. (5.96)

Condition (5.96) is satisfied for small β if m ≤ m(β) as in (5.23). Using (5.95) we
derive from (5.92), (5.96) and (5.56) that

|p·∇k′φζ,
ζ(k, �k)| ≥ p0

2
> 0 if (5.94) holds. (5.97)

Now we use (5.97) to estimate denominators, (5.68) to estimate second k′-
derivatives of ω and (5.69) to estimate ∇k′χ. We conclude that

|I(k, τ1)| ≤ C2s+1
Ξ

∫
Ds

[
�

τ1p0
|∇k′A

(s)

ζ,
ζ
(k, �k)| + 8�Cω,2

τ1p2
0

|A(s)

ζ,
ζ(m)
(k, �k)|

]
d̃(s−1)d�k

≤ �

τ1p0

[
‖(∇k′ −∇k(s))χ(s)(k, ·)‖ +

8Cω,2

p0
‖χ(m)(k, ·)‖

]
C2s+1

Ξ

s∏
j=1

‖Mj‖L1

+
�C2s+1

Ξ ‖χ(s)(k, ·)‖
τ1p0

[
s∏

j=2

‖Mj‖L1‖∇k′M1‖L1

+
s−1∏
j=1

‖Mj‖L1‖∇k(s)Ms‖L1

]
. (5.98)
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To estimate ∇Mi we use Lemma 5.21. We also use (5.2) and (5.5) to estimate
‖Mj‖L1. Therefore, using (5.72), we obtain

|I(k, τ1)| ≤
C

τ1
τ i−1
∗ C2i+e

Ξ Ci
χ

�

β1+εp0
m2Rm−1. (5.99)

Finally, we consider the case when the alternative Condition 2.23 holds. In this case
M1 and Ms according to Lemma 5.12 are localized near ν1k∗l1 and ν2k∗ls with some
ν1 and ν2; we use (2.94) to obtain (5.92) both for AFM and ANFM submonomials.
Therefore (5.97) holds and we again get (5.98) and (5.99). So, we proved (5.99) in
all cases. Integrating (5.99) in τ1 we obtain

‖F1‖E ≤ Cτ i−1
∗ C2i+e

Ξ Ci
χ

�

β1+εp0
m2|ln β|Rm−1. (5.100)

Using summation over all �λ, �ζ (the sum involves no more than 32m terms) we obtain
(5.85) from (5.87) and (5.100).

6. Proof of the Superposition Theorems

In this section we prove Theorems 2.15 and 2.19 on the approximate modal super-
position principle.

6.1. Proof of the superposition principle for lattice equations

Here we prove Theorem 2.15. First we note that according to Lemma 5.6 we can
replace h̃l by h̃Ψ

l in the statement of Theorem 2.15, in particular in (2.47) and
(2.48). Hence we can assume that (5.56) holds.

Based on Theorem 5.4, we expand the solution of (2.3) into series (5.8) and then
into the sum of composition monomials M(F , T ) as in (4.33):

G(F , h̃) = h̃ +
∞∑

m=2

∑
T∈Tm

cT M(F , T )(h̃m), (6.1)

where

h̃ =
Nh∑
l=1

h̃l, ‖h̃l‖E ≤ R, l = 1, . . . , Nh, (6.2)

and the relation (5.19) (that is NhR < RG) holds, where RG is the radius of conver-
gence from Theorem 5.4, R will be specified below. Using Lemma 5.7 we conclude
that

G(F , h̃) = h̃ +
m(β)∑
m=2

∑
T∈Tm

cT M(F , T )(h̃m) + g, ‖g‖E ≤ β, (6.3)

where m(β) is defined by (5.23). Then we expand every monomial M(F , T )(h̃m)
according to (5.28) into the sum of the terms M(F , T )(h̃l1 · · · h̃lm). Note that since
m(β) ≤ C|ln β|, conditions (5.96), (5.70) and (5.47) are satisfied if β is small enough
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for every m ≤ m(β). The monomials M(F , T )(h̃l1 · · · h̃lm) belong to two classes, SI
and CI (according to Definition 5.8) and the class is determined by the multiindex
(l1, . . . , lm) = l̄. Using (6.3) we conclude that

G
(
F ,

Nh∑
l=1

h̃l

)
=

Nh∑
l=1

G(F , h̃l) + D̃, (6.4)

D̃ =
m(β)∑
m=2

∑
T∈Tm

∑
CI l1,···,lm

cT M(F , T )(h̃l1 · · · h̃lm) + g1, ‖g1‖E ≤ Cβ.

To obtain (2.48), we have to estimate the sum in D̃ and show that it is small. It
follows from (4.35) that∥∥∥∥∥

m(β)∑
m=2

∑
T∈Tm

∑
CIl1,...,lm

cT M(F , T )(h̃l1 · · · h̃lm)

∥∥∥∥∥
E

≤
m(β)∑
m=2

Nm
h

∑
T∈Tm

cT sup
T∈Tm,CIl̄

‖M(F , T )(h̃l1 · · · h̃lm)‖E

≤
m(β)∑
m=2

Nm
h c0c

m
1 sup

T∈Tm,CIl̄

‖M(F , T )(h̃l1 · · · h̃lm)‖E.

Now we consider an evaluated monomial M(F , T )(h̃l1 · · · h̃lm) with arguments given
by CI multiindex l̄ = (l1, . . . , lm). To prove that this monomial has a small norm,
according to Lemma 4.24 it is sufficient to show that one of its submonomials
is small and the relevant operators are bounded. According to Proposition 5.9
the monomial M(F , T )(h̃l1 · · · h̃lm) contains a submonomial M(F , T ′)(h̃ls′ · · · h̃ls′′ )
with the homogeneity index s = s′′ − s′ + 1, the incidence number i′ and the rank
r′ which is minimal in the following sense. The monomial M(F , T ′)(h̃ls′ · · · h̃ls′′ )
is CI, but every its submonomial M(F , T ′′)(h̃ls′′ · · · h̃ls′′′ ) is SI. Now we use the
space decomposition (5.1) and expand M(F , T ′) as in (4.44) into a sum of no
more than 32m decorated monomials M(F , T ′, �λ, �ζ)(h̃ls′ · · · h̃ls′′ ). The decorated
submonomials of every decorated monomial are SI. We apply Lemma 5.22 and
conclude that

‖M(F , T ′, �λ, �ζ)(h̃ls′ · · · h̃ls′′ )‖E ≤ C

[
�

β1+ε
|ln β| + β

]
s2

p0
τ i′−1
∗ Ce′+2i′

Ξ Ci′
χ Rs′′−s′

.

(6.5)

Hence, there is a submonomial of M(F , T )(h̃l1 · · · h̃lm) with a small norm. Namely,
since (2.46) and (2.5) are assumed, this small submonomial provides the smallness
of the norm of the whole monomial M(F , T )(h̃l1 · · · h̃lm) according to Lemma 4.24.
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We also use Corollary 5.2 and (2.26) to estimate norms of remaining submonomials
of rank r and apply (4.32) and (5.72) to obtain

‖M(F , T )(h̃l1 · · · h̃lm)‖ ≤ 32m

[
�

β1+ε
|ln β| + β

]
C1m

2τ i−1
∗ Ce+2i

Ξ Ci
χRm−1. (6.6)

Since e = i + m− 1, using (4.25) and the inequalities i(T ) = i ≥ m/mF , i ≤ m− 1
we get

m(β)∑
m=2

∑
T∈Tm

∑
CIl1,...,lm

cT M(F , T )(h̃l1 · · · h̃lm)

≤ C2

[
�

β1+ε
|ln β| + β

] ∞∑
m=2

τ
m/mF −1
∗ m2Nm

h cm
1 Rm−1, (6.7)

with c1 = 9C5
ΞCχ. The series converges if, in addition to (5.19), R satisfies the

inequality

RNhc1τ
1/mF∗ < 1.

For such R and τ∗, combining (6.7) with (6.3) and using (2.46) we obtain (2.48),
and the Theorem 2.15 is proved.

6.2. Proof of the superposition principle for PDE

Here we prove Theorem 2.25 (and its particular case Theorem 2.19). The proof is
completely similar to the above proof of Theorem 2.15 up to every detail. One only
have to replace Dm given by (2.23) by Dm given by (2.65) and the space L1 is now
defined by (2.66) instead of (2.31).

Remark 6.1. Note that smallness of CI terms is essential and is based on differ-
ent group velocities of single band wavepackets. Note that separation of different
wavepackets based only on FM and NFM arguments as in Lemma 5.17 is impossi-
ble since there are always FM monomials with different l because of the symmetry
conditions (2.15) and (2.16), for example and FM condition

ζωn,ζ(ζk∗) − ζ′ωn′(ζ′k∗1) − ζ′′ωn′′(ζ′′k∗2) − ζ′′′ωn′′′(ζ′′′k∗3) = 0

is fulfilled if

n = n′, ζ = ζ′, k∗ = k∗1, n′′ = n′′′, ζ′′ = −ζ′′′, k∗2 = k∗3

independently of the values of k∗, k∗3 and independently of a particular form of
functions ωn(k).
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7. Examples and Possible Generalizations

7.1. Fermi–Pasta–Ulam equation

FPU equation on the infinite lattice has the form

∂2
t xn = (xn−1 − 2xn + xn+1) + α3((xn+1 − xn)3 − (xn − xn−1)3)

+ α2((xn+1 − xn)2 − (xn − xn−1)2). (7.1)

It can be reduced to the following first-order equation

∂txn = yn − yn−1, ∂tyn = xn+1 − xn + α3(xn+1 − xn)3 + α2(xn+1 − xn)2.

(7.2)

We introduce lattice Fourier transforms x̃(k) and ỹ(k) by (2.2), namely

x̃(k) =
∑

n

xne−ink, k ∈ [−π, π].

First we write Fourier transform of the linear part of (7.2) (that is with α3 = α2 =
0). Multiplying by e−ink and doing summation we obtain

∂tx̃(k) = ỹ(k) − e−ikỹ(k), ∂tỹ(k) = eikx̃(k) − x̃(k).

that can be recast in the matrix form as follows

∂t

[
x̃

ỹ

]
=
[

0 −(eik − 1)∗

eik − 1 0

][
x̃

ỹ

]
.

The eigenvalues of the matrix are purely imaginary and equal iωζ(k) with

ωζ(k) = ζ|eik − 1| = 2ζ

∣∣∣∣ sin k

2

∣∣∣∣, ζ = ±, −π ≤ k ≤ π.

The eigenvectors are orthogonal and are given explicitly by

gζ(k) =
1√

2|eik − 1|

[
iζ|eik − 1|

eik − 1

]
=

1√
2

 iζ

eik − 1
|eik − 1|

 , ζ = ±, k 	= 0. (7.3)

Now let us consider nonlinear terms. Note that the lattice Fourier transform of the
product x(n) z(n), n ∈ Zd is given by the following convolution formula

x̃z(k) =
1

(2π)d

∫
[−π,π]d

x̃(s)z̃(k − s) ds (7.4)

as in the case of the continuous Fourier transform. Note that

˜xn+1 − xn(k) = (eik − 1)x̃(k),

and, hence, the Fourier transform of the cubic term of the nonlinearity in (7.2) is

˜(xn+1 − xn)3 =
1

(2π)2

∫
k′+k′′+k′′′=k;(k′,k′′)∈[−π,π]2

(eik′ − 1)(eik′′ − 1)(eik′′′ − 1)

× x̃(k′)x̃(k′′)x̃(k′′′) dk′dk′′, (7.5)

and similar convolution for the quadratic term.
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7.2. Examples of wavepacket data

Here we give examples of initial data for PDE in Rd and on the lattice Zd which
are wavepackets in the sense of Definition 2.9. We define a wavepacket by (2.33)
where hζ is chosen to satisfy (2.35) and (2.34).

Recall that a Schwartz function is an infinitely smooth function Φ(r), r ∈ Rd

which rapidly decays and satisfies for every s ≥ 0 the inequality

sup
r

∑
|α|+p≤s

|r|p|∂α
r Φ(r)| dr ≤ C1(s), (7.6)

where

∂α
r Φ(r) = ∂α1

r1
· · ·∂αd

rd
Φ(r), α = (α1, . . . , αd), |α| = α1 + · · · + αd.

It is well known that Fourier transform of a Schwartz function remains to be a
Schwartz function and that its derivatives satisfy the inequality

sup
k

∑
|α|+p≤s

||k|p∂α
k Φ̂(k)| ≤ C2(s). (7.7)

Example 1. We consider equation in Rd as in Sec. 1.2. The simplest example of a
wavepacket in the sense of Definition 2.9 is a function of the form (2.36) where∫

Rd

|ĥζ(k)| + |∇kĥζ(k)| + |k|1/ε|ĥζ(k)| dk < ∞, (7.8)

and gn,ζ(k) is an eigenvector from (2.13). Note that β−dĥζ(k/β) is the Fourier
transform of a function hζ(βr).

Lemma 7.1. Let ĥ(β,k), k ∈ Rd be defined by (2.36) and (7.8). Then ĥl,ζ(β,k)
is a wavepacket with wavepacket center k∗ in the sense of Definition 2.9 with L1 =
L1(Rd).

Proof. First, condition (2.32) holds since

‖ĥζ(β, ·)‖L1 =
∫

Rd

β−d

∣∣∣∣ĥζ

(
k − ζk∗

β

)
gn,ζ(k∗)

∣∣∣∣dk = |gn,ζ(k∗)|
∫

Rd

|ĥζ(k)| dk.

Condition (2.33) is obviously fulfilled since

ĥζ(β,k) = Πn,ζ(k)h̃ζ(β,k).

Inequality (2.34) follows from the estimate

β−d

∫
|k−ζk∗|≥β1−ε

∣∣∣∣ĥζ

(
k − ζk∗

β

)∣∣∣∣dk ≤ β

∫
|k|≥β−ε

|k|1/ε|ĥζ(k)| dk ≤ Cβ. (7.9)
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To verify (2.35) we note that since Πn,ζ(k) smoothly depend on k near ζk∗ we have∫
|k−ζk∗|≤β1−ε

|∇kĥζ(β,k)| dk

≤ C

∫
|k−ζk∗|≤β1−ε

β−d−1

∣∣∣∣∇kĥl

(
k − ζk∗

β

)∣∣∣∣+ β−d

∣∣∣∣ĥl

(
k − ζk∗

β

)∣∣∣∣ dk
≤ Cβ−1

∫
Rd

|∇kĥζ(k)| dk + C

and (7.8) implies (2.35).

Example 2. Let us consider a lattice equation in Zd as in Sec. 1.1. We would
like to give a sufficient condition for functions defined on the lattice which ensures
that their Fourier transforms satisfy all requirements of Definition 2.9. We pick a
Schwartz function Φ(r) (see (7.6)), a vector k∗ ∈ [−π, π]d and introduce

h(β, r) = e−ir·k∗Φ(βr), r ∈ Rd. (7.10)

Then we restrict the above function to the lattice Zd by setting r = m. The following
lemma is similar to Lemma 7.1.

Lemma 7.2. Let Φ(r) be a Schwartz function, hζ(β, r) be defined by (7.10),
h̃ζ(β,k) be its lattice Fourier transform. Then the function h̃ζ(β,k) extended to
Rd as a periodic function with period 2π satisfies all requirements of Definition 2.9
with L1 = L1([−π, π]d).

Proof. The lattice Fourier transform of h(β, r) equals

h̃(β,k) =
∑

m∈Zd

e−im·k∗Φ(βm)e−im·k =
∑

m∈Zd

Φ(βm)e−im·(k−k∗). (7.11)

Since the above expression naturally defines h̃(β,k) as a function of k − k∗, it is
sufficient to take k∗ = 0. To get (2.34), we use the representation of Φ(r) in terms
of inverse Fourier transform (2.60)

Φ(r) =
1

(2π)d

∫
Rd

Φ̂(k)eir·k dk, Φ(βm) =
1

(2πβ)d

∫
Rd

Φ̂
(

1
β
k
)

eim·k dk. (7.12)

We split Φ(βm) into two terms:

Φ(βm) =
1

(2πβ)d

∫
Rd

Ψ
(

1
β1−ε

ξ

)
Φ̂
(

1
β

ξ

)
eim·ξ dξ + Φ1(m),

Φ1(m) =
1

(2πβ)d

∫
Rd

(
1 − Ψ

(
1

β1−ε
ξ

))
Φ̂
(

1
β

ξ

)
eim·ξ dξ,

(7.13)

with Ψ(ξ) defined by (5.12). The first term in (7.13) coincides with the inverse
lattice Fourier transform, its lattice Fourier transform is explicitly given and can be
treated as in Lemma 7.1. The second term gives O(βN ) with large N for Schwartz
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functions Φ̂. Using these observations we check all points of Definition 2.9 as in
Lemma 7.1.

7.3. The nonlinear maxwell equation

We expect that the approximate superposition principle can be generalized to the
Nonlinear Maxwell equations (NLM) in periodic media studied in [4] . A concise
operator form of the NLM is

∂τU = − i
�
MU + FNL(U) − J0, U(τ) = 0 for τ ≤ 0,

where the excitation current

J(τ) = 0 for τ ≤ 0.

We were studying the properties of nonlinear wave interactions as described by the
Nonlinear Maxwell equations in series of papers [1–6]. Our analysis of the solu-
tions to the NLM uses an expansion in terms of orthonormal Floquet–Bloch basis
G̃n,ζ(r,k), n = 1, . . . , namely

Ũ(k, r, τ) =
∑

ζ=±1

∞∑
n=1

Ũn,ζ(k, τ)G̃n,ζ(r,k), k ∈ [−π, π]d. (7.14)

This expansion is similar to (2.18) with J replaced by ∞, since the linear Maxwell
operator in a periodic medium has infinitely many bands. The excitation currents
take the form similar to forcing term in (3.1), namely

J̃(r,k, τ) = j̃n,+(k, τ)G̃n,+(r,k)e−
i
� ωn(k)τ + j̃n,−(k, τ)G̃n,−(r,k)e

i
� ωn(k)τ ,

J̃n(r,k, τ) = 0, n 	= n0,

with a fixed n = n0. The difference with (3.1) is that time-independent hn,ζ(k)
is replaced by j̃n,ζ(k, τ). The functions j̃n,ζ(k, τ) for every τ have the form of
wavepackets in the sense of Definition 2.9, or in particular the form similar to
(2.36) with fixed k∗.

The Existence and Uniqueness Theorem for the NLM is proven in [4], in partic-
ular function-analytic representation of the solution as a function of the excitation
current. The results of this paper can be extended to the NLM equations provided
that certain technical difficulties are addressed. Particularly, the classical NLM
equation allows for the time dispersion with consequent time-convolution integra-
tion in the nonlinear term. This complication can be addressed by approximating it
with a nonlinearity of the form (2.22) with an error O(�) = O(β2), see [6]. Then the
derivation of the approximate linear superposition principle for wavepackets can be
done as in this paper. Another complication with the NLM is that it has infinite
number of bands.
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7.4. Dissipative terms in the linear part

Equations (2.3) and (2.61) involve linear operators iL(k) with purely imaginary
spectrum. Quite similarly we can consider equations of the form

∂τÛ(k, τ) =
[
−G(k) − i

�
L(k)

]
Û(k, τ) + F̂ (Û)(k, τ), (7.15)

where a Hermitian matrix G(k) commutes with the Hermitian matrix L(k) and
G(k) is non-negative. In this case the approximate superposition principle also
holds. The proofs are quite similar. In the case (2.61), which corresponds to of PDE,
G(k) determines a dissipative term, for example G(k) = |k|2I,k ∈ Rd, where I is
the identity matrix, corresponds to Laplace operator ∆. When such a dissipative
term is introduced, we can consider nonlinearities F̂ which involve derivatives, see
[8, 9] in a similar situation. For such nonlinearities our framework remains the same,
but some statements and proofs have to be modified. We will consider this case in
a separate paper.

Appendix A. Structure of a Composition Monomial Based
on Oscillatory Integrals

Every composition monomial M(F , T, �λ(ŝ), �ζ(m))(h̃1 · · · h̃m) based on oscillatory
integral operators F (m) as defined by (3.14) and the space decomposition as defined
by (5.1) has the following structure. Let T be the tree corresponding to the mono-
mial M . The monomial involves integration with respect to time variables τ(N)

where N ∈ T are the nodes of the tree T . The monomial also involves integra-
tion with respect to variables kN , N ∈ T . The argument of the integral operator
M(F , T, �λ(ŝ), �ζ(m)) involves only end nodes (of zero rank) and has the form∏

rank(N)=0

h̃N (kN ).

The kernel of the integral operator involves the composition monomial M(χ, T,
�λ(ŝ), �ζ(m)) based on the susceptibilities tensors χ

(m)

ζ,
ζ(m)
(k, �k(m)) with the same tree

T . Note that the phase matching condition (3.12) takes the form

kN = k′
N + · · · + k(µ(N))

N =
µ(N)∑
i=1

kci(N).

Recall that if ci(N), i = 1, . . . , µ(N) is the ith child node of N , then the arguments
in (3.14) are determined by the formula

kci(N) = k(ci)
N .

Hence, the kernel of the integral operator M(F , T, �λ(ŝ), �ζ(m))(h̃1 · · · h̃m) involves
the product of normalized delta functions∏

rank(N)>0

δ(kN − kc1(N) − · · · − kcµ(N)(N)),
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and the integration with respect to kN is over the torus( ∏
N �=N∗

∫
[−π,π]µ(N)d

)
[· · ·]

∏
N �=N∗

dkN ,

and, obviously, the variable kN∗ corresponding to the root node N∗ is not involved
into the integration.

Since every operator F (m) at a node N of the monomial M(F , T, �λ(ŝ), �ζ(m))
contains the oscillatory factor

exp
{

iφζ,
ζ(m),N
(k, �k(m))

τ(N)

�

}

= exp
{

i[ζNω(kN ) − ζ′Nω(k′
N ) − · · · − ζ

(m)
N ω(k(m)

N )]
τ(N)

�

}
,

we obtain the following total oscillatory factor

exp
{

i
1
�
Φζ,
ζ(m),T

(k, �k(m))
}

, (A.1)

where the phase function ΦT,
ζ(�k) of the monomial is defined by the formula

ΦT,
ζ(�k, �τ ) =
∑
N∈T

[
ζNω(k) −

µ(N)∑
i=1

ζ
(ci(N))
N ω(kci(N))

]
τ(N). (A.2)

The vectors �k, �τ and �ζ are composed of kN , τN and ζN using the standard labeling
of the nodes.

Notice then that the oscillatory exponent (A.1) is the only expression in the com-
position monomial which involves parameter �. Observe also that the FM condition
takes here the form

ζN =
µ(N)∑
i=1

ζ
(ci(N))
N .

The domain of integration with respect to time variables is given in terms of the
tree T by the following inequalities

DT = {τ(N) : 0 ≤ τ(N) ≤ τ(p(N)), N ∈ T \N∗} (A.3)

where p(N) is the parent node of the node N . Using introduced notations we can
write the action of the monomial M(F , T, �λ(ŝ), �ζ(m)) in the form

M(F , T, �λ, �ζ)

 ∏
rank(N)=0

h̃N

 (kN∗ , τN∗)

=
∫

DT

( ∏
N �=N∗

∫
[−π,π]µ(N)d

)
exp
{

i
1
�
ΦT,
ζ(

�k, �τ)
}

M(χ, T,�λ, �ζ,�k)
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×
∏

rank(N)=0

h̃N (kN )
∏

rank(N)>0

δ(kN − kc1(N) − · · · − kcµ(N)(N))

×
∏

N �=N∗

dkN

∏
N �=N∗

dτ(N). (A.4)

Note that m equals the number of end nodes, that is nodes with zero rank and they
are numerated using the standard labeling of the nodes, that is

h̃1(k1) · · · h̃m(km) =
∏

rank(N)=0

h̃N (kN ).

The formula (A.4) gives a closed form of a composition monomial based on oscilla-
tory integral operators F (m) with an arbitrary large rank.

Appendix B. Proof of the Refined Implicit Function Theorem

Here we give the proof of Theorem 4.25.
First, we consider the following elementary problem which provides majorants

for the problem of interest. Let a function of one complex variable be defined by
the formula

F̌(u) = CF
∞∑

m=2

umR−m
F = CF

[
u2/R2

F
1 − u/RF

]
, CF > 0, RF > 0. (B.1)

In this case F̌ (m)(x1 · · ·xm) = CFR−m
F x1 · · ·xm. Let us introduce the equation

u = F̌(u) + x, u, x ∈ C (B.2)

which is a particular case of (4.1). A small solution u(x) of this equation such that
u(0) = 0 is given by the series

u = Ǧ(x) =
∞∑

m=1

Ǧ(m)xm,

which is a particular case of formula (4.14). The terms Ǧ(m)xm of this problem are
determined from (4.18) and can be written in the form (4.29)

Ǧ(m)xm =
∑

T∈Tm

cT M(F̌ , T )xm. (B.3)

Obviously,

M(F̌ , T )xm = C
i(T )
F R

−e(T )
F xm (B.4)

where i(T ) is the incidence number of the tree T , e(T ) is the number of edges of T .
Now we compare solution of the general equation (4.1). It is given by the formula
(4.14) with operators G(m)(um) admitting expansion (4.29). Since

‖F (m)‖ ≤ CFR−m
F ,
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where the constants are the same as in (B.1) we have

‖M(F , T )(x1 · · ·xν)‖ ≤ M(F̌ , T )‖x1‖ · · · ‖xν‖,

implying ∑
T∈Tm

cT ‖M(F , T )(x1 · · ·xm)‖

≤
∑

T∈Tm

cT M(F̌ , T )‖x1‖ · · · ‖xm‖ = Ǧ(m)‖x1‖ · · · ‖xm‖. (B.5)

Solving (B.2) we get explicitly

u =
RF
2c

(
1 −
√

1 − 4c
x

RF

)
= Ǧ(x), c =

CF
RF

+ 1.

We have the following estimate of the coefficients

Ǧ(m) ≤ R2
F

2(CF + RF )

(
4
CF + RF

R2
F

)m

, m = 1, 2, . . . , (B.6)

(see [4] for details in a similar situation). From (B.4) and (B.6) we infer the following
inequality ∑

T∈Tm

cT C
i(T )
F R

−e(T )
F ≤ R2

F
2(CF + RF )

(
4
CF + RF

R2
F

)m

which holds for all CF , R F > 0. We set CF = RF = 1 and obtain the desired
bound (4.35).

Notations and Abbreviations

For the reader’s convenience, we provide below a list of notations and abbreviations
used in this paper.

AFM — alternatively frequency matched, see Definition 5.19
ANFM — alternatively non-frequency-matched, see Definition 5.19
band-crossing points — see Definition 2.3
cc — complex conjugate to the preceding terms in the formula
composition monomial — see Definition 4.9
decoration projections — see (4.36) and (4.37)
decorated monomial — see Definition 4.20
CI monomials — cross-interacting monomials, see Definition 5.8
FPU, Fermi–Pasta–Ulam equation — see (2.10), (2.11) and (7.1)
Floquet–Bloch modal decomposition — see (7.14)
Fourier transform — see (2.59)
FM — frequency matched, see Definition 5.10 and also (5.42)
homogeneity index of a monomial — Definition 4.9
homogeneity index of a tree — Definition 4.11
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incidence number of a monomial — number of occurrences of operators
F (l) in the composition monomial

incidence number of a monomial — see Definition 4.10
incidence number of a tree — Definition 4.12
lattice Fourier transform — see (2.2)
monomial — Definition 4.9
NFM — non-frequency-matched, see Definition 5.10 and also (5.46)
oscillatory integral operator — see (3.8) and (3.3)
rank of monomial — see Definition 4.9
root operator — (4.20)
SI monomials — self-interacting monomials, see Definition 5.8
Schwartz functions — infinitely smooth functions on Rd which decay faster

than any power, see (7.6)
single-mode wavepacket — see Definition 2.9
submonomial — (4.10)
wavepacket — see Definition 2.9

d̃(m−1)�k =
1

(2π)(m−1)d
dk′ · · · dk(m−1) — see (2.24)

Dm = [−π, π](m−1)d — see (2.23) or Dm = R(m−1)d — see (2.65)

E = C([0, τ∗], L1) — see (2.30)

F̂ (m) — m-linear operator in L1, see (2.22) and (2.64)

F (m)

n,ζ,
n,
ζ
— basis element of the m-linear operator F (m) in E, see (3.8)

F (n)

λ,
ζ
— see (4.43)

ĥζ(β,k), ζ = ± — Fourier transform of the wavepacket initial data hζ(β, r),
see Definition 2.9

ĥζ

(
1
β ξ
)
, ζ = ± — Fourier transform of the wavepacket initial data hζ(βr), see

Definition 2.9
h̃Ψ

l (k, β) — a function nullified outside β1−ε vicinity of ±k∗, see (5.15)
k = (k1, . . . , kd) ∈ [−π, π]d — quasimomentum (wave vector) variable, see (2.2)

and (2.25).
k = (k1, . . . , kd) ∈ Rd — Fourier wave vector variable, see (2.59) and (2.25).
k∗ = (k∗1, . . . , k∗d) — center of the wavepacket, see Definition 2.9
k∗l — center of lth wavepacket
�k = (k′, . . . ,k(m)), — interaction multiwave vector, see (2.25) and (3.7).
k(s)(k, �k) = k − k′ − · · · − k(s−1) — see (2.25)
L1 — Lebesgue space L1([−π, π]d) or L1(Rd), see (2.31) and (2.66)
n — band number
�n = (n′, . . . , n(m)) — band interaction index, (3.7)

∇r =
(

∂

∂r1
,

∂

∂r2
, . . . ,

∂

∂rd

)
— spatial gradient
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O(µ) — any quantity having the property that O(µ)
µ is bounded as µ → 0

ωn̄(k) = ζωn(k) — dispersion relation of the band (ζ, n), see (2.13)
ω′

n0
(k) = ∇kωn0(k) — group velocity vector

ωn(k) — nth eigenvalue of L(k), see (2.13); dispersion relation of nth band
Ψ — cutoff function in quasimomentum domain, see (5.12)
φ
n(k, �k) = ζωn(k) − ζ′ωn′(k′) − · · · − ζ(m)ωn(m)(k(m)) — interaction phase

function, (3.9)
π0 — see (5.13)
Πn,ζ(k) — projection in C2J onto direction of gn,ζ(k), see (2.19)
r = (r1, . . . , rd) — spatial variable
� = β2 — (2.46)
σ — the set of band-crossing points, see Definition 2.3
Û(k) — Fourier transform of U(r), see (2.59)
Ũn,ζ(k, τ) = ũn,ζ(k, τ)e−

iτ
� ζωn(k) — amplitudes, see (3.2)

ζ = ± or ζ = ±1 — band binary index.
�ζ = (ζ′, . . . , ζ(m)) — binary band index vector, see (3.7)
Z∗ – complex conjugate to Z
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